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Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar

weather and climate regimes, there is an intermediate “macroweather” regime characterized by

negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so

that averages tend to converge. We show theoretically and numerically that macroweather

precipitation can be modeled by a stochastic weather-climate model (the Climate Extended

Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we

show numerically that a four parameter space-time CEFIF model can approximately reproduce

eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and

numerically difficult to manage. We therefore propose a simplified stochastic model in which

the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a

multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng

Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property

often implicitly assumed by climatologists that climate statistics can be “homogenized” by

normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial

macroweather variability corresponds to different climate zones that multiplicatively modulate

the local, temporal statistics. This simplified macroweather model provides a framework for

macroweather forecasting that exploits the system’s long range memory and spatial correlations;

for it, the forecasting problem has been solved. We test this factorization property and the model

with the help of three centennial, global scale precipitation products that we analyze jointly in

space and in time. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927223]

Scaling analyses of precipitation and other atmospheric

fields have shown the existence of an intermediate regime

between the familiar weather and climate regimes:

“macroweather,” over the range of time scales from

about 10 days to decadal, centennial scales. Although

macroweather is important for seasonal, annual, and dec-

adal forecasts, there have been no studies of its spatial

variability and few studies of its temporal variability,

with no coherent picture emerging. A recent paper (de

Lima and Lovejoy, submitted) makes a step in this direc-

tion by systematically studying the separate temporal

and spatial variabilities in three centennial, global scale

precipitation products: one instrument based, one reanal-

ysis based, and one satellite and gauge based. In this pa-

per, we build on this work to analyze the joint space-time

fluctuations using spectra as well as Haar structure func-

tions allowing us to verify the prediction that the joint

functions factor into separate spatial and temporal terms.

We make explicit space-time stochastic models with

roughly the observed statistics. Physically, factorization

means that the spatial macroweather variability corre-

sponds to different climate zones that multiplicatively

modulate the local, temporal statistics. The findings

provide a framework for macroweather models that can

make forecasts exploiting the long range memory as well

as the spatial correlations.

I. INTRODUCTION

Ever since at least (Van der Hoven, 1957) it has been

recognized that the atmosphere undergoes a drastic transition

in its statistical properties at time scales of the order of 2–10

days. At first, this was theorized as “migratory pressure

systems of synoptic weather map scale…” and termed the

“synoptic maximum” by Kolesnikov and Monin (1965) and

Panofsky (1969); more recently, Vallis (2010) attributed it to

baroclinic instabilities. However, following Lovejoy and

Schertzer (1986), it was alternatively theorized as a transi-

tion scale sw between two scaling regimes at a scale corre-

sponding to the lifetime of planetary sized structures. This

interpretation was bolstered by the demonstration (Lovejoy

and Schertzer, 2010c) that the scale can be theoretically

estimated from first principles from knowledge of the solar

output and the efficiency of conversion from solar to me-

chanical energy (�4%). Further evidence in favor of the

theory was the demonstration in Lovejoy and Schertzer

(2013) that the spectrum of the ocean could be analogously

explained (with a transition at �1 year). More recently, the

theory successfully explained the statistical structure of the

a)Author to whom correspondence should be addressed. Electronic mail:

lovejoy@physics.mcgill.ca.
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Martian atmosphere (with a transition at about 1.8 days

(Lovejoy et al., 2014)). Physically, the transition time scale

is the lifetime of planetary sized structures, fluctuations at

shorter time scales are dominated by smaller structures with

their corresponding shorter lifetimes. At longer time scales,

there is a “dimensional transition,” the spatial degrees of

freedom rapidly become “quenched,” the space-time statis-

tics factorize into separate spatial and temporal functions

(see below), at these time scales the statistics are those of

several lifetimes of structures.

If we consider the temporal fluctuations in an atmos-

pheric variable I over an interval Dt as DI(Dt), then in a scal-

ing regime the mean fluctuations vary as hDI(Dt)i�DtH,

where H is the fluctuation exponent (for Gaussian processes,

it is equal to the Hurst exponent, “h i” means statistical aver-

aging). Lovejoy and Schertzer (2013) showed for rain as

well as the thermodynamic and dynamical variables that the

transition at sw was always between an H> 0 high frequency

weather regime and an H< 0 low frequency “macroweather”

regime. In particular, for rain, the transition scale sw varied

somewhat with latitude from about 2–5 days, see Fig. 1(a) (a

little less than for the temperature which is 5–10 days). The

different behaviors (H> 0, H< 0) correspond to average

fluctuations growing or decreasing with scale; in the macro-

weather regime, since H< 0, they tend to cancel so that aver-

ages over longer and longer times converge. However—at

least for temperature, but probably also for the precipitation

and other atmospheric fields—rather than converging to a

fixed “climate” as one might expect, after about 10–30 years

(industrial period) and �100 years (pre-industrial period),

there is a transition to another scaling regime—the climate

proper—again with fluctuations growing with scale (H> 0;

see the rise in Fig. 1(a) beyond� 30 years). In the pre-

industrial period over the last millennia, the situation is not

so clear since the macroweather-climate transition scale sc

apparently has a great deal of spatial variability, see Lovejoy

and Schertzer (2013), section 11.1.3.

Although the exact value of the preindustrial sc may still

be uncertain, for the temperature field the basic three-scaling

regime picture is relatively robust notably because (a) of the

existence of high quality paleotemperature data that allow us

to estimate the statistics at decadal and centennial scales for

preindustrial epochs, (b) the temperatures are not too inter-

mittent so that the uncertainties are smaller, (c) the theoreti-

cal and GCM modeling implications of anthropogenic

effects on the temperature are much clearer than for precipi-

tation, and (d) (deterministic) numerical models well repro-

duce the weather and macroweather regimes including

exponents, as do (stochastic) turbulence based cascade mod-

els (see Sec. III).

For precipitation, the basic picture seems to be the same,

although there is more uncertainty. For example, in the

weather regime, the existence of transitions from zero to fi-

nite rain rates breaks the scaling (Lovejoy et al., 2008; de

Montera et al., 2009; Mandapaka et al., 2010; Sun and

Barros, 2010; Verrier et al., 2010; Verrier et al., 2011;

Hoang et al., 2012; and Gires et al., 2013) but the distinction

between real and spurious breaks due to instrumental prob-

lems at low rain rates is still under debate (see the review in

Lovejoy and Schertzer (2013, section 4.4). In contrast, in the

macroweather regime there are numerous papers showing

scaling analyses with data spanning a range of weather and

macroweather scales, but only a few that explicitly attempted

to distinguish the two regimes and to estimate macroweather

FIG. 1. (a) The first order structure function (the mean absolute Haar fluctua-

tion) using precipitation data from the Climate Prediction Center (CPC, conti-

nental U.S.) gridded gauges (dots) as well as the corresponding structure

function of the 20CR reanalysis at 45�N (6 h, 2� resolution, from 1871 to

2008, thick green line). hDRi is the mean absolute fluctuation in the rain rate

over a time interval Dt (i.e. q¼ 1). For the CPC product, we also show the cor-

responding grid point to grid point one-standard-deviation limits (thin) with

reference lines slopes H¼�0.42 (solid) and �0.5 (dashed, corresponding to a

Gaussian white noise process). Also at the far left a reference line slope 0.15

indicates the weather regime H value (this value is sensitive to the treatment of

low and zero rain rates, it is not too robust). NOAA’s CPC product is unique in

its high temporal resolution over a large number of contiguous grid points. The

product analyzed was a (near complete) subset of the CPC data for the 29 years

1948–1976 (at this date there is a data gap of several weeks so that we did not

extend the analysis to more recent times). The CPC data were gridded on

2.5� � 2.0� boxes by using a modified Cressman Scheme (an interpolation

technique); we used its central rectangular 13� 21 point region from �122.5�

to �72.5� longitude (every 2.5� � 210 km at these latitudes), and from 30� to

54� latitude (every 2� � 220 km). Each grid box had a near complete�257 000

hourly series. Haar fluctuations were used (see Section II B). Adapted with per-

mission from Lovejoy et al., Adv. Water Res. 45, 37–50 (2012). Copyright

2012 Water Resources Research. (b)The ratio of the mean q¼ 1 and RMS fluc-

tuations for the CPC dataset. Reference lines have slopes K(2)/2�C1 and

show the transition from high intermittency behavior at scales less than a few

days (the “weather regime”) to low but not insignificant intermittency behavior

at scales of months to years (the “macroweather regime”). Gaussian white

noise would be flat (K(2)¼ 0). Reproduced with permission from Lovejoy

et al., Adv. Water Res. 45, 37–50 (2012). Copyright 2012 Water Resources

Research.

075410-2 S. Lovejoy and M. I. P. de Lima Chaos 25, 075410 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

188.251.47.104 On: Mon, 14 Sep 2015 22:18:14



exponents (i.e., from several days to years or decades).

Examples of the former include Douglas and Barros (2003),

Pathirana et al. (2003), Bunde et al. (2005), Garcia-Marin

et al. (2008), de Lima and de Lima (2009), Bunde et al.
(2013), and Rysman et al. (2013); while examples of the lat-

ter are Ladoy et al. (1991), Tessier et al. (1996), de Lima

(1998), Kantelhardt et al. (2006), and Lovejoy et al. (2012).

The exponents from these studies are summarized in Table I

of [de Lima and Lovejoy, submitted] (hereafter dLL) (see

also Table 10.1 in Lovejoy and Schertzer (2013), they gener-

ally concur with the results discussed below—i.e., low inter-

mittency and H��0.4, Table I). It could be noted that while

some of the papers cited in the former category did quote

exponents in the macroweather regime, they suffered from

technical issues that led to large inaccuracies: two types of

relevant technical problems are discussed in Sec. III B.

Although the temporal statistics still need clarification,

as far as we can tell, there have been no studies at all of

spatial macroweather statistics. This is partly due to the

diversity of analysis techniques used and partly due to the

strong focus on scaling statistics from individual stations.

We need clarification of (a) the (possible) variation of the

exponents with latitude, (b) their variation over land, over

ocean, (c) the global scale averaged values, (d) the expected

anthropogenic (low frequency) effects, (e) the degree of

agreement/disagreement between different techniques for

estimating areal precipitation, and (f) the joint space-time

macroweather statistics. Issues (a)–(e) were addressed in

dLL; while the joint space-time statistics needed for macro-

weather modeling with the related theoretical and modeling

issues are the focus of this paper.

Empirical investigations cannot be divorced from theo-

retical frameworks and macroweather precipitation is no

exception. Lovejoy and Schertzer (2010c) and Lovejoy and

Schertzer (2013) showed that space-time turbulent cascade

models (the Fractionally Integrated Flux, FIF model) which

were developed for weather scales could be extended to the

macroweather regime by the simple expedient of allowing

the cascades to develop starting from an (outer) time scale

much longer than sw (the Extended FIF (EFIF) model). The

argument—summarized in more detail in Sec. III—leads to

the conclusion that space-time macroweather statistics

should—at least approximately—satisfy a fundamental

space-time statistical factorization property. For example,

applied to the spectral density Pxyt(kx,ky,x) in horizontal

space-time (x,y,t) (kx, ky, x are the corresponding nondimen-

sional wavenumbers and frequency), it implies that

Pxyt(kx,ky,x) ¼Pxy(kx,ky)Pt(x), where Pxy(kx,ky) and Pt(x)

are the horizontal and temporal spectral densities, respec-

tively. This contrasts with the space-time weather statistics

that have spectra involving (turbulent) space-time scale func-

tions such as ðk2
x þ k2

y þ x2Þ1=2
raised to various powers and

that therefore cannot be factored in this way [see Pinel et al.
(2014) for extensions to cases with mean advection, and

Pinel and Lovejoy (2014) for further generalizations to

waves). Although it was not explicitly theoretically proposed

until Lovejoy and Schertzer (2013), factorization means that

different (spatially distributed) climate zones modulate the

local temporal statistics without changing their type (e.g.,

their temporal scaling). The factorization principle is already

implicitly used in practical climatology when, for example,

local station statistics are nondimensionalized by local stand-

ard deviations or by using (nondimensional) probability dis-

tributions so as to “homogenize” the data or to produce

various climate indices that may be compared between dif-

ferent stations with different climates.

II. DATA AND FLUCTUATIONS

A. The data

We are interested here in the space-time structure of pre-

cipitation over time scales from about 1 month to centuries

(and longer if possible), and in space from global scales to

scales of a few degrees (or smaller if possible). The main rel-

evant gauge based dataset is the Global Historical

Climatology Network product (GHCN; Lawrimore et al.,
2011) available from the NOAA site, which is monthly data

for the period 1900–2012 at 5� � 5� resolution. In order to al-

leviate issues to do with missing data, series consistency,

etc., only the precipitation anomalies were reported (i.e.,

with the annual cycle removed and relative to the 1961–1990

reference period). The data are gauge based, they are there-

fore restricted to land (but virtually all the pixels have signif-

icant outages). By excluding the oceans, the GHCN product

will likely give a biased view of global scale precipitation.

This is true not only because the oceans comprise 70% of the

earth’s surface but also because oceanic precipitation is

likely to be different from precipitation over land, and this

includes a potentially much stronger response to anthropo-

genic warming. The only two relevant ocean precipitation

TABLE I. Macroweather precipitation anomaly and raw fluctuation exponents (H). The exponents were generally not estimated with high accuracy partly

because of the high intermittency (the scaling was noisy) but also because more precise values are not warranted since the exact limits of the scaling ranges are

not clear. Note that while the data agree quite well on the temporal exponent, they disagree strongly on the spatial exponent including the sign (the EW and NS

values of H were judged to be quite close so only a single spatial value was given). For the spatial 20CR and Smith fields (where the absolute precipitation rates

were known, not just the anomalies), the spatial H’s for the raw and anomaly fields were quite close (except at the larger distances/angles, 4th column, where

the anomalies seem close to the GHCN anomalies). CPC refers to the Climate Prediction Center, GHCN the Global Historical Climate Network, 20CR the

Twentieth Century Reanalysis, and “Smith” refers to Smith et al. (2012) IR satellite data based product.

Time Space anomaly (angle subtended <50�–80�) Space anomaly (angle subtended >50�–80�) Space raw data

CPC �0.42 … … …

GHCN �0.4 �0.2 �0.2 …

20CR �0.4 0.2 �0.2 0.2

Smith �0.4 0.1 �0.2 0.15
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datasets of which we are aware from the Twentieth Century

Reanalysis (20CR; Compo et al., 2011) and the Smith et al.
(2008; 2012) satellite/gauge reconstruction (hereafter abbre-

viated “Smith”). Both of these datasets are very indirect, for

example, the 20CR data (which is available at 2� � 2� and

6 h resolution, much higher than needed here) are derived

solely from surface pressure data and monthly Sea Surface

Temperature (SST) data, the precipitation is entirely inferred

from a numerical model; the result—a “reanalysis”—is a

kind of data/model hybrid (the product used here is monthly

at 1.875� resolution, see, e.g., Kalnay (2003) for the data

assimilation techniques used to produce reanalyses). In com-

parison, the Smith data use a gauge calibrated Infra Red sat-

ellite rain algorithm to infer global scale rain over the

satellite observation period (1979–2012). This is then used

to calculate Empirical Orthogonal Functions (EOF’s).

Finally, in the pre-satellite era, the historic land based gauge

data (GHCN) are used to estimate the coefficients of each

EOF, yielding global scale estimates at 5� � 5�, monthly re-

solution. dLL discusses, compares, and contrasts these data-

sets’ details as functions of space and time scale. For the

means of the absolute rates for the Smith and 20CR data (the

GHCN gives only anomalies), they find that there is a dis-

agreement of �20% for the mean land precipitation esti-

mates, but only about 5% for the ocean estimates: overall the

disagreement is by about 10% for the global values.

B. Quantifying the variability over scales:
Fluctuations, structure functions

Consider the global scale averages, the anomalies

are shown in Fig. 2(a) (a typical space-time plot is shown in

Fig. 2(b)). Notice that the gauge based product (GHCN) is

much more variable (more high frequencies are present) than

the Smith product, itself more variable than the 20CR prod-

uct. We can also note that while there is some overall agree-

ment at the lowest frequencies, the higher frequencies are

often in disagreement. In order to quantify the high and low

frequency variability, we can consider the mean and the root

mean square (RMS) fluctuations.

While many fluctuation definitions are possible, in this

paper we use Haar fluctuations. The Haar fluctuation of the

precipitation DR(Dt) at time scale Dt is simply the difference

of the mean of R over the first and second halves of the inter-

val Dt

DR Dtð Þð ÞHaar ¼
2

Dt

ðt
t�Dt=2

R t0ð Þdt0 � 2

Dt

ðt�Dt=2

t�Dt

R t0ð Þdt0; (1)

where we have added the subscript “Haar” to distinguish it

from other common definitions of fluctuation and we have

suppressed the t dependence because we will assume that the

fluctuations are statistically stationary. Haar fluctuations are

simple to understand because with an appropriate

“calibration” constant (a factor 2 used throughout this paper),

in scale regions where H> 0, the Haar fluctuations are nearly

equal to the differences (“dif”), in scale regions where

H< 0, they are nearly equal to the anomalies (“anom”)

DR Dtð Þð Þdif ¼ R tþ Dtð Þ � R tð Þ;

DR Dtð Þð Þanom ¼
1

Dt

ðtþDt

t

R0 t0ð Þdt0; R0 ¼ R� �R; (2)

where �R is the mean over the entire series. Mathematically,

we have ðDRðDtÞÞHaar � ðDRðDtÞÞdif , 0<H< 1, and

ðDRðDtÞÞHaar � ðDRðDtÞÞanom, �1<H< 0.

Now that we have defined the fluctuations, we need to

characterize them; the simplest way is through (generalized)

structure functions (generalized to fluctuations other than the

usual differences, and generalized to moments q of order

other than the usual value 2): hDRðDtÞqi, where “h.i” indi-

cates statistical (ensemble) averaging.

Physically, if the system is scaling, then the fluctuations

are related to the driving flux u by

DRðDtÞ ¼ uDtDtH; (3)

where we have used the subscript “Dt” on u to indicate that

it is the flux averaged at resolution Dt. The qth order struc-

ture function is

hDRðDtÞqi ¼ huq
DtiDtqH: (4)

Turbulent fluxes are conserved from scale to scale so

that huDti¼ constant (independent of scale) implying that

hDRi / DtH, so that H is the mean fluctuation exponent.

Beyond the simplicity of interpretation, the Haar fluctuations

give a good characterization of the variability for stochastic

processes with H over the range �1<H< 1 which includes

all the common geophysical series and processes. In contrast,

fluctuations defined as differences or as anomalies are only

valid over the narrower ranges of 0<H< 1, �1<H< 0,

respectively (see Lovejoy and Schertzer (2012b) and

Lovejoy et al. (2013)). Outside these ranges in H, the fluctu-

ation at scale Dt is no longer dominated by frequencies

�Dt�1 so that the fluctuations depend spuriously on details

of the finite data sample, specifically either the highest or the

lowest frequencies that happen to be present.

The generic scaling process is a multifractal process so

that, in general, u has statistics

huq
Dti � Dt�KðqÞ; (5)

where K(q) is a convex function. Substituting this into Eq.

(4), we obtain

hDRðDtÞqi � DtnðqÞ; nðqÞ ¼ qH � KðqÞ; (6)

where n(q) is the “structure function exponent.” Although

we return to this in more detail in Sec. III, for the moment

note that the mean (q¼ 1) flux huDti is independent of Dt, so

that K(1)¼ 0 and hence n(1)¼H. Note also that for quasi

Gaussian processes, none of the moments of uDt have any

scale dependence so that K(q)¼ 0 and n(q)¼ qH (all the

scale dependence is characterized by H). A useful character-

ization of K(q) is provided by C1¼K0(1) which quantifies

the intermittency near the mean (q¼ 1, see below). Finally,

the RMS fluctuation hDRðDtÞ2i1=2
has exponent n(2)/2 so
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that the error in using the quasi-Gaussian approximation to

estimate H (i.e., the approximation n(2)/2¼H) is

n(2)/2�H¼K(2)/2. In the temporal macroweather domain,

the latter is typically small—in the range of 0.02–0.04 so

that the approximation n(2)/2�H is fairly accurate. Figure

1(b) shows a direct estimate using the enormous CPC hourly

gridded raingauge product over the continental U.S.

(�7� 107 gridded quantities were used in the analysis, a

product already derived from a much larger set of station se-

ries measurements). We see that the temporal intermittency

as quantified by K(2)/2 is large at weather scales (lower left

part of the figure, K(2)/2� 0.35) but is much smaller at

macroweather scales (�0.035, upper right part of the fig-

ure). The use of the second moment is conventional since

it directly determines the exponent b of the spectrum

E(x)�x�b, where x is the frequency: b¼ 1þ n(2); we

therefore have used the RMS statistics below. However, in

dLL and in Section III B (using a different method) we show

that spatial macroweather has K(2)/2� 0.1, so that in the

spatial domain the approximation n(2)/2�H is poor, and a

full multifractal characterization is needed (i.e., including

K(q)). Note that in the higher frequency weather regime, the

spatial intermittency is even stronger: K(2)/2� 0.4 (see

Tables I and II for global scale weather regime estimates).

Finally, even when K(2)/2 is small, the probability distribu-

tion of the fluctuations may be far from Gaussian, indeed

power law probability tails are a generic consequence of the

space-time scaling. For example, dLL shows the distribution

of monthly precipitation rate changes Pr(DR> s)� s�qD

with qD¼ 3.6 (a bit lower than the macroweather tempera-

ture value qD� 5 but close to the weather scale precipitation

value qD� 3, see Table 5.1b in Lovejoy and Schertzer

(2013) for a review with over a dozen references with

qD� 3).

FIG. 2. (a) The annual precipitation rate anomalies averaged over land only (bottom), ocean (middle), and globally (top). The black (thick) curve is the Global

Historical Precipitation network (GHCN) from January 1900 to December 2012. The red (dashed) curves were the 20CR from 1880 to 2004 and the green

(thin) curves were for the Smith product. The GHCN and Smith et al. (2012) (Smith) products were at 5� � 5� resolution, the 20CR data were at 1.875� resolu-

tion. For clarity, the data were shifted upwards by 2 mm/month increments as indicated by the dashed horizontal lines. (b) The 20CR anomaly data at 33�N,

1024 months (starting in 1871), 64 consecutive longitudes at 1.875� resolution starting from 0� and moving to the west. This illustrates the space-time macro-

weather structure that is modeled below; compare this with the models in Figs. 6(a)–6(c). (c) The pixel scale world maps of the distribution of Ht for monthly

precipitation for the three datasets discussed in the paper (5� � 5�, 3.75� � 3.75�, and 5� � 5� resolutions for GHCN, 20CR, and Smith datasets, respectively,

from top to bottom; the 20CR resolution was degraded 2� 2 pixels so as to be more comparable to the resolutions of the other datasets). The transition from

reddish to bluish occurs at roughly the mean Ht value of �0.4. The exponents were estimated from the annually detrended data using the Haar analysis tech-

nique with exponents fit over the range of 6 months to 12 years (to avoid possible biases at low frequencies due to anthropogenic effects or poor statistics). The

pink in the GHCN map corresponds to no data (mostly oceans).
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C. Overview of temporal and spatial macroweather
precipitation statistics

In dLL, the GHCN, 20CR, and Smith datasets were sys-

tematically analyzed and compared over the range of 1 month

to �100 years and from one pixel (primarily 5� � 5�) to global

scales; the overall summary of the statistical properties is

shown in Tables I and II. In the time domain, for all products,

we found very similar behaviors: for land, ocean, global, and

for various latitude bands for pixel and global scales, we found

H��0.4 which is a little higher than Gaussian white noise

(H¼�1
2
), the main differences being the amplitudes of the

fluctuations (e.g., the RMS variability at a given scale such as

one year) and the outer scale sc, the transition scale to the cli-

mate regime (here presumably associated with anthropogenic

effects). The global scale analyses had sc� 20 years, whereas

the pixel scale analyses (including several individual long sta-

tion series from Portugal) had sc� 40 years. Here and below,

when needed to avoid confusion, we introduce the subscripts

“t” for temporal and “x” for spatial exponents.

Analyzing the time series on a pixel by pixel basis (see

Fig. 2(c)), we found: Ht��0.41 6 0.07, �0.38 6 0.09, and

�0.43 6 0.10 for the GHCN, 20CR, and Smith data, respec-

tively (the corresponding estimates of the intermittency

parameter C1 were 0.026 6 0.02, 0.020 6 0.025, and

0.00 6 0.01, the uncertainties here and above indicate one

standard deviations of the dispersion of the values about the

mean). Ht is thus roughly globally constant with a value

��0.4. In order to see if the spread is simply due to estima-

tion errors, in Fig. 2(c) we show the spatial distribution of Ht

estimates. There is some spatial organization and reasonable

agreement between the GHCN and 20CR maps, less agree-

ment with the Smith map. There is also a tendency for Ht to

be low over oceans (especially the Pacific), this is physically

plausible since Ht values closer to zero correspond to longer

range predictability (Lovejoy et al., in press). However, the

values should be taken with caution since the 20CR tempera-

tures have lower H over the oceans and the 20CR estimates

the precipitation rather indirectly.

Since C1 is very small, Ht alone characterizes the long

range statistical dependencies in the macroweather precipita-

tion process and it turns out that the effective “memory”

depends sensitively on Ht: the white noise value �1/2 corre-

sponds to no memory (no predictability) while the value

Ht¼ 0 to an infinite memory (perfect predictability), see

Lovejoy et al. (in press). One way to quantify the memory is

the fraction of the variance that can be explained by forecast-

ing one time step into the future by using the past data (i.e., a

one month forecast with monthly data, a one year forecast with

yearly data). For the global temperature, Ht��0.2 and about

35% of the variance can be explained, for ocean temperatures

(SST’s) Ht��0.1 and 65% can be explained. In contrast, for

precipitation, with Ht��0.4 only 4% can be explained (this

might still be useful, especially if the skill could be increased

with the help of co-correlates). For the temperature field, Ht is

found to vary relatively systematically, in particular, being

strongly correlated with land or ocean location with the lower

(more predictable) Ht’s generally over the ocean. The rough

agreement on the geographical distribution of Ht values in Fig.

2(c) is therefore important.

The rough agreement between different datasets on tem-

poral scaling exponents is consistent with macroweather pre-

cipitation being reasonably estimated, and this in spite of the

quite different techniques used to estimate precipitation rates

(instruments, reanalyses, and satellite based). While such an

agreement is a necessary condition for the products to agree

with each other, it is not sufficient: indeed, each product could

be from a statistically independent realization of the same

stochastic process. To gain further confidence in the quality,

accuracy of the precipitation products, dLL therefore com-

pared the product fields directly to each other by considering

the difference between pairs of the three products and studied

the fluctuation statistics of the resulting difference fields.

The dLL analysis showed that the agreement between

the products was not so good. For example, for the GHCN

and 20CR products, the agreement at scales below a year but

also greater than 10 years was low. Similarly, for the global

scale 20CR and Smith products (the two that were not miss-

ing data), there was poor agreement until scales of 5 years or

so and poor agreement for monthly data at scales beyond

about 30 years (significant for anthropogenic effects).

In space, the situation was somewhat different with poor

agreement for scales below about 20�–30� latitude. It also

seemed that the spatial scaling exponents were significantly

different, with the 20CR and Smith products being much

smoother (the Smith and 20CR, Hx were about 0.3 larger than

for the GHCN product, although at the very largest scales they

were close, see Table I). The smoothness may be an artefact of

the limitations of the 20CR model and the smoothness of the

satellite IR fields that were used to infer the Smith product.

The spatial and temporal scaling properties of macro-

weather precipitation that we have just described are qualita-

tively very similar to those of macroweather temperatures as

TABLE II. A comparison of the spatial intermittency parameter C1 and the

effective outer scale (Leff) for various data products at weather scales

(ECMWF: 3 h resolution; 20CR: 6 h resolution; CPC: 1 h resolution;

TRMM: 4 days resolution) and at macroweather scales (all at one month).

ECMWF refers to the European Centre for Medium range Weather

Forecasting interim reanalysis. The weather analyses and parameters were

taken from Lovejoy et al. (2012). The “time” column refers to pixel scale

spatial resolutions. For the macroweather regime, the C1 values of the glob-

ally averaged series were slightly higher. Also, the CPC data in the macro-

weather regime give C1¼ 0.04 (see Fig. 1(b)). The macroweather

intermittencies (C1) are significantly lower than the corresponding weather

values, especially in time. The macroweather 20CR row reports two zonal

(EW) values from Figs. 4(c) and 4(d) corresponding to latitudes 30�–60� N

and 0�–30� N. The exponents of the spatial anomalies are given in the table.

Product

C1 Leff (km)

Time EW NS EW NS

Weather

ECMWF 0.34 0.41 0.45 50 000 32 000

20CR 0.21 0.26 … 25 000 …

CPC 0.37 0.49 0.51 40 000 32 000

TRMM 0.30 0.27 0.32 40 000 16 000

Macroweather

GHCN 0.01 0.11 … … …

20CR 0.02 0.09–0.12 0.19 30 000–55 000 27 000

Smith 0.01 0.15 0.21 25 000 10 000
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analyzed, for example, in Lovejoy and Schertzer (2012a;

2013). The main differences between temperature and pre-

cipitation statistics are that the latter have generally lower

temporal H values, higher spatial C1 values, and somewhat

longer transition scales sc. Similar comments also pertain

when comparing weather scale temperatures and precipita-

tion (although in the weather regime, the intermittency

parameter C1 is much larger for precipitation than for tem-

perature). This indicates that precipitation may be treated in

the same theoretical framework as the temperature (and other

atmospheric fields) which can be modeled with the help of

space-time cascade processes. In this picture, the scaling

laws are emergent high level statistical (turbulent) laws

expected to apply in the limit of high nonlinearity.

III. MACROWEATHER MODELS AND SPACE-TIME
STATISTICAL FACTORIZATION

A. Theoretical considerations

dLL and the other studies cited above indicate that in

the macroweather regime there is good scaling in space and

in time. This basically reflects the absence of strong scale

breaking processes. Scaling symmetries also hold with high

accuracy in the weather regime; Lovejoy and Schertzer

(2013) is a review for 30 years of research supporting this

conclusion; however, the single Fig. 3 is enough to show—at

least for thermal infra red satellite data (the type used by the

Smith algorithm to infer precipitation)—that the scaling

symmetry is in fact quite exact. The figure uses nearly

1300 h of hourly geostationary MTSAT data (at 30 km reso-

lution) from a 8000� 13 000 km2 region centred on the equa-

torial Pacific (see Pinel et al. (2014) for details). It can be

seen that the zonal (i.e., EW), meridional (NS), and temporal

spectra are nearly identical up to �(5–10 days)�1 and are

nearly perfect power laws (most of the deviations from line-

arity in the figure can be accounted for by the finite resolu-

tion and finite data “window,” see the black line that

theoretically takes these limitations into account). The main

exceptions are the two small spectral “bumps” at (1 day)�1

and (12 hours)�1, both due to the diurnal cycle. These 1-D

spectral densities were obtained by successively integrating

out the complementary variables in the full (horizontal)

space-time spectral density Pxyt(kx,ky,x). This figure—and

many others in Pinel et al. (2014)—show that the spectrum

satisfies the isotropic scaling symmetry

Pxytðkkx; kky; kxÞ ¼ k�sPxytðkx; ky;xÞ; (7)

where empirically, s¼bþ 2� 3.4 (note that at any given

scale Pxyt displays anisotropy; Eq. (7) simply implies that the

anisotropy does not change with scale, see Pinel et al. (2014)

for the full analysis), and see Pinel and Lovejoy (2014) for

the interpretation of spectra in terms of waves and turbu-

lence. This result applies in the Euclidean frame; in the

Lagrangian (co-moving) frame, the space-time relation is no

longer isotropic, the lifetime s of a structure size l is

s ¼ e�1=3l2=3, where e is the turbulent energy flux.

By necessity, the scale symmetry (Eq. (7)) can only hold

up to planetary scales (Lw); this implies a breakdown in the

time domain at scales sw which is interpreted as the lifetime of

planetary scale structures. In Fig. 3, the breakdown occurs

when the colored lines diverge from the black line which rep-

resents perfect scaling but with deviations due to the finite ac-

cessible region of Fourier space (rectangular with square

pixels). We find a breakdown at k� (5000 km)�1 and

x� (5 days)�1; Lovejoy and Schertzer (2010c) describes how

this is determined by the turbulent energy flux e (power/mass):

sw ¼ e�1=3L2=3
w , where Lw and sw are the outer space and time

scales of the weather regime and e itself is determined by the

solar flux. This theory well describes the spectrum of many of

the atmospheric variables, ocean temperatures, as well as the

Martian weather and macroweather (Lovejoy et al., 2014).

B. Spatial intermittency, multifractality, cascades

We have mentioned that the spatial intermittency is

much stronger than the temporal intermittency. One way to

demonstrate this is to use the Haar fluctuations directly, esti-

mating n(q) from the exponents of the qth order moments

and then to estimate K(q) as �n(q)þ qn(1) (see Eq. (6)).

Due to the missing data, this was the approach followed for

the GHCN data (see Tables I and II). However, for the 20CR

and Smith data, we can easily estimate u and hence K(q)

directly; for example, using Eq. (3) we can readily obtain

u
hui ¼

DR

hDRi : (8)

If DR is estimated at the smallest available scale—for

these complete, gridded data, we used the absolute second

finite difference along the transect—then Eq. (8) shows that the

normalized high resolution flux is obtained by dividing by the

mean fluctuation hDRi. This high resolution flux can then be

systematically degraded to lower resolution by averaging. The

generic multifractal process is a multiplicative cascade; if such

a process starts at outer scale Leff, then the statistics follow:

huq

k0
i ¼ k0

KðqÞ
; k0 ¼ Lef f =Dr ; (9)

FIG. 3. 1D spectra of MTSAT thermal IR radiances; the Smith product was

developed with very similar IR satellite radiance fields. In black: the theoretical

spectrum using parameters estimated by regression from Eq. (7) and taking

into account the finite space–time sampling volume. The one dimensional

spectra are Ex(kx) � kx
�bx, Ey(ky)� ky

�by, and Et(x)�x�bt with

bx�by�bt� 1.4 6 0.1; s� 3.4 6 0.1. The straight line is a reference line

with slope �1.5 (blue). Pink: zonal spectrum; orange: the meridional spectrum;

blue (with the diurnal spike and harmonic prominent): temporal spectrum.

Reproduced with permission from Pinel, J. and Lovejoy, S., Atmos. Chem.

Phys. 14, 3195–3210 (2014). Copyright 2014 European Geosciences Union.
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where k0 is the scale ratio of the outer scale to the resolution

scale Dr of the degraded flux (see Eq. (5)). In empirical anal-

yses, Leff is not known a priori, it has to be estimated from

the data; here we use a convenient scale ratio based on

Lw¼ 20 000 km, which is the largest distance on the earth

(half a circumference), i.e., k¼ Lw/Dr. If Eq. (9) holds, then,

for all q the lines of log huq
ki against log k will cross at a

scale corresponding to keff¼Lw/Leff.

We mentioned in the introduction that there are two

technical issues that have not always been carefully consid-

ered and which have led to incorrect macroweather exponent

estimates; they both involve incorrect flux estimates. For

example, if daily precipitation is analyzed by estimating the

flux as indicated (Eq. (8); by absolute first or second differ-

ences for DR), then one will obtain correct trace moment

estimates of the weather regime exponents. However, the

scaling (and exponents) of these daily resolution fluxes in

the macroweather regime (e.g., when daily fluxes are aver-

aged to monthly values), will be different from the scaling

and exponents that would be obtained if we first took

monthly averages and then estimated the flux from the abso-

lute differences of monthly resolution averages before

degrading the resolution further. It is the latter method that

gives the correct macroweather exponent estimates. The

mathematical reason for the difference is that taking absolute
differences at the finest resolution (Eq. (8)) is a nonlinear

transformation: the physical reason is that the weather and

macroweather fluxes are physically different. Alternatively,

if one has monthly data but one neglects to take the absolute

differences before degrading (i.e., implicitly assuming that

the rain rate is already a pure cascade with H¼ 0), then one

has n(q)¼�K(q) (Eq. (6) with H¼ 0 instead of ��0.4), so

that one can easily find the values, C1� 0.6 (with H implic-

itly¼ 0) instead of the correct values H��0.4, C1� 0 (e.g.,

they give the same n(2), hence the same spectral exponent,

see Eq. (10) below with a� 0.6).

Figures 4(a) and 4(b) show the trace moment result

when the various moments of order 2� q� 0 are estimated

for the Smith anomaly data (i.e., the difference between the

raw precipitation data and the long term averages, see Sec.

III D) in the zonal and meridional directions, respectively

(even if the intermittency is low, higher order moments may

diverge hence it is best to use only these relatively low order

moments). It can be seen from the log-log linearity that the

scaling is excellent up to about 10 000 km (it is a little better

in the zonal direction). In addition, the lines plausibly cross

at a scale of the order of the size of the planet (see Table II);

the fact that Leff can be a little larger than the size of the earth

(Lw) is because, even at planetary scales (20 000 km), there is

some residual variability due to the interaction of the precipi-

tation field with other atmospheric fields: Leff is simply the

“effective” scale at which the cascade would have had to

start in order to explain the statistics over the observed range.

Figures 4(c) and 4(d) show similar analyses for the 20CR

anomaly data and 4(e) and 4(f) show the trace moments of

the long term averages. This shows some differences

between anomalies and long term averages with larger outer

scales (meaning more variability at any given scale), but

with no clear trends for C1 (i.e., the rate at which the vari-

ability near the mean changes with scale).

The slopes in Fig. 4 determine K(q) (Eq. (9)); the latter is

a convex function, equivalent to an infinite number of

parameters. Fortunately, one can avail of a multiplicative ana-

logue of the usual (additive) central limit theorem for random

variables (the climate process, see below). This shows that

under fairly general circumstances K(q) is determined by only

two parameters that define multifractal “universality classes”

K qð Þ ¼
C1

a� 1
qa � qð Þ; 0 � a � 2 ; (10)

where a is the Levy index and C1 is the codimension of the

mean (Schertzer and Lovejoy, 1987). From Eq. (10), we see

that C1¼K0(1); this provides a convenient way of estimating

the parameters (for a, one can use a¼K00(1)/K0(1)). Table II

(bottom rows) shows the resulting parameter estimates for

the macroweather regime and compares these with those in

the weather regime (top rows). For the Smith data, the esti-

mates of the parameter a were all in the range of 1.7–1.85

(see also Table III for the 20CR that were a bit more dis-

persed). Also, note that the difference between the exponents

of the RMS and mean (important for interpreting the slopes

in the RMS Haar graphs), n(2)/2�H¼K(2)/2¼AaC1,

where Aa ¼ ð2a � 1Þ=ða� 1Þ. For example, if we take

1.85> a> 1.7 we find 0.95>Aa> 0.9 (near one), so that C1

provides a good estimate of the error in using the RMS expo-

nent n(2)/2 in place of H. From Table II, we see that, in space,

the difference n(2)/2–H can be readily in the range of 0.1–0.2:

it is significant. Also notable in Table II is the comparison of

weather and macroweather exponents and outer scales. We can

see that while the outer scales are very similar, weather scale

precipitation is much more variable (the C1 parameter is much

higher) than macroweather precipitation.

C. Space-time cascades, the FIF and EFIF models,
and macroweather factorization

The generic multiplicative cascade process u with mul-

tifractal statistics (Eq. (9)) can be modelled either by direct

multiplication of “multiplicative increments” discretized on

a dyadic tree (i.e., with large “parent” structures multiplied

by reduced scale “daughter” structures) or, equivalently,

produced by exponentiating an additive generator C, the lat-

ter method having the advantage of being continuous in scale

(rather than repeating only with integer powers of an integer

scale ratio as in the “discrete in scale” dyadic cascades), see

Subsection 1 of the Appendix for a review. However, most

processes of interest are not the direct result of a cascade

process, the prototypical example being the velocity field in

Kolmogorov turbulence. In this case, velocity fluctuations

scale as Dv� e1/3DxH, where e is the energy flux (from large

to small scales) and H¼ 1/3. In the Fractionally Integrated

Flux (FIF) model, velocity fields with the corresponding H
are obtained by fractionally integrating the flux (in this case

e1/3). A fractional integration is the most general linear trans-

formation, if it is of order H, it is simply a power law filter,

e.g., jkj�H
where k is a wavenumber. In real space dimension

d, it is a convolution with the singularity jrj�ðd�HÞ
(we have

075410-8 S. Lovejoy and M. I. P. de Lima Chaos 25, 075410 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

188.251.47.104 On: Mon, 14 Sep 2015 22:18:14



used vector norms corresponding to the isotropic special

cases, adequate for our present purposes). To extend this to

weather regime space-time processes, we need only to take

into account causality and, if needed, anisotropy.

To extend this from the weather to the macroweather

regime (including the transition between them) it suffices to

assume that a multiplicative cascade starts at a scale Lw in

space, but at a scale sc much larger than sw in time: the EFIF

model (see the schematic of Fig. 5(a)). To see this, write the

weather-macroweather flux uw,mw (subscripts “w” and

“mw”), here for precipitation (see Eqs. (3) and (9)) in terms

of its “generator” Cw,mw(r, t)

uw;mwðr; tÞ ¼ eCw;mwðr;tÞ: (11)

C is a scaling additive process so that u is multiplicative (see

Schertzer and Lovejoy (1987)). If C has the appropriate

FIG. 4. (a) Zonal (EW) trace moments for the Smith anomaly data spanning the region from �45� to 45� latitude, M ¼ huq
ki. Note the convergence close to

20 000 km and the low C1 value. L¼Lw/Dr with Lw¼ 20 000 km. The top curve is for q¼ 2, with q ranging down to 0.1. (b) Same as (a) but for the meridional

(NS) direction. (c), (d), (e), and (f): The trace moment analyses (with M ¼ huq
ki) of the 20CR anomalies in the east-west direction (at 1.875� resolution), aver-

aging the data over the bands from the equator to 30�N ((c) and (d)) and from 30�–60�N ((d) and (f)). The outer reference scale is 180� which corresponds to

nearly 20 000 km in (c) and (e), but only 14 000 km in (d) and (f) so that for the anomalies ((c) and (d)) Lw� 30 000 km, 55 000 km, respectively. Also for the

anomalies, the C1 parameter is 0.12, 0.09 (0–30�N and 30�–60�N), respectively, i.e., slightly higher near the equator (see Table II). The bottom row ((e) and

(f)) show the corresponding spatial analyses of the long term average rates from 1871 to 2012. The parameters are C1� 0.17, 0.13 and outer scales 30 000,

44 000 km, respectively, see Table III.
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TABLE III. A comparison of various spatial macroweather exponent estimates using the 20CR data in latitudinal bands between 0�–30�N and 30�–60�N over

the period 1871–2012. R(r,t) is the anomaly rain rate at position r, time t; Rc is the climatological rainrate obtained by averaging over the entire length of the

series and Rraw is the raw data (only annually detrended).

0�–30�N 30�–60�N

R(r,t) (anomaly) Rc(r) (mean) Rraw(r,t) (raw) R(r,t) (anomaly) Rc(r) (mean) Rraw(r,t) (raw)

C1 0.12 0.17 0.18 0.09 0.13 0.13

a 1.7 1.4 1.5 2.0 2.0 2.0

Outerscale (km) 30 000 30 000 45 000 55 000 44 000 56 000

FIG. 5. (a) A schematic diagram show-

ing time and a single spatial dimension

for the FIF model (top), EFIF (second

from top), CEFIF (third), and CEFIF

averaged over macroweather (bottom).

Space and time are nondimensional-

ized using the planetary scale Lw for

space, and the corresponding weather

time scale sw¼ e�1/3Lw
2/3 so the

weather/macroweather transition occurs

at t¼ 1 and x� 1. Also indicated are

the basic forms of the space-time (gen-

eralized, qth order structure function)

statistics with the CEFIF model having

space-time factorization. (b) A sche-

matic diagram showing the weather and

macroweather regions of integration for

the cascade convolution (Eq. (12)) in

horizontal-time space (x,y,t) nondimen-

sionalized by using the size of the earth

and the lifetime of planetary structures.

B1 is the space-time region correspond-

ing to weather processes (r< 1, t< 1;

r ¼ ðx2 þ y2Þ1=2
) and Bw is the corre-

sponding inner (dissipation) scale, size

Kw
�1 (a factor Kw times smaller). The

cylindrical region between the red

(dark, larger, filled) circles is macro-

weather region with r< 1, Kc> t> 1;

in this region, the temporal variability

dominates the integral since the convo-

lution kernel g is nearly independent of

r (c is an i.i.d. Levy noise subgenerator

representing the innovations). Adapted

with permission from Lovejoy, S. and

D. Schertzer, The Weather and Climate:
Emergent Laws and Multifractal
Cascades (Cambridge University Press,

2013). Copyright 2013 Cambridge

University Press.
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scaling, then u will satisfy Eq. (9) of a multiplicative cas-

cade, it will follow the behavior in Figs. 4(a) and 4(b). For

this, we require

C ¼ Nc � g; gðr; tÞ ¼ HðtÞvðr; tÞb�d=a;

vðr; tÞb ¼ jðr; tÞj ¼ ðjrj2 þ t2Þ1=2; (12)

where “*” indicates space-time convolution over the entire

region for which the cascade occurs. In Eq. (12), N is a nor-

malization factor and c is a Levy noise subgenerator index a
made up of independent identically distributed random varia-

bles representing the “innovations,” d¼ 3 is the dimension

of (horizontal) space-time and H(t) is the Heaviside function

(¼0 for t< 0, ¼1 for t� 0) needed to take causality into

account (see Marsan et al. (1996) and chap. 9 in Lovejoy

and Schertzer (2013)). vr; tb is a space-time scale function;

although it can be quite general we have chosen the simplest

possible consistent with the isotropic symmetry in Eq. (7)

(i.e., the norm of the vector (r,t)). Space and time were non-

dimensionalized using the planetary scale Lw distances and

the lifetime of planetary structures sw. Fuller details are

given in Subsection 1 of the Appendix.

Figure 5(b) shows a schematic of the region of integra-

tion: it can be seen that for the convolution in Eq. (12), the

domain of integration can be separated into two statistically

independent terms as

Cw;mwðr; tÞ ¼ Cwðr; tÞ þ Cmwðr; tÞ; (13)

where the weather and macroweather generators are

Cwðr; tÞ ¼
ð

K�1
w �jrj�1

ð1
K�1

w

gðr � r0; t� t0Þcðr0; t0Þdt0dr0;

Cmwðr; tÞ ¼
ð

K�1
w �jrj�1

ðKc

1

gðr � r0; t� t0Þcðr0; t0Þdt0dr0: (14)

In the above, the weather generator Cw is obtained by inte-

grating over the space-time region corresponding to weather

processes (K�1
w� r� 1, t� 1; r ¼ jrj ¼ ðx2 þ y2Þ1=2

) down

to dissipation scales (indicated B1 and Bw in Fig. 5(b) which is

the corresponding inner (dissipation) scale, size Kw
�1 (a factor

Kw times smaller). The macroweather generator Cmw is

obtained from the cylindrical region between the red circles,

i.e., the region with Kw
�1� r� 1, Kc� t� 1; in this region

(denoted “M” in the Appendix), the temporal variability domi-

nates the integral since the convolution kernel g is nearly inde-

pendent of r. Kw
�1 is the inner scale ratio of the weather

processes and Kc¼ sc/sw is the outer scale ratio of the tempo-

ral cascade. The first term on the right of Eq. (13) (Cw) corre-

sponds to a roughly isotropic space-time region so that all the

degrees of freedom (the c’s) are important in the left most inte-

gral and—due to the astute choice of exponent in Eq. (12)

(d/a)—the weather regime statistics follow the multiplicative

cascade law in Eq. (9) with K(q) given by Eq. (10) (the value

of C1 is determined by N, see Subsection 1 of the Appendix for

a review). However, the macroweather term (the second term

on the right in Eq. (13)) is pencil-like, and over the macro-

weather range of temporal integration t� 1� r so that

gðr; tÞ � HðtÞt�d=a and hence it is mostly the temporal degrees

of freedom that are effective, the spatial degrees of freedom

are essentially “quenched”; the system is essentially reduced

in dimension from a 2þ 1 horizontal space, time to a 1 dimen-

sional system (time), a “dimensional transition” (Lovejoy and

Schertzer, 2010c).

Exponentiating the generators, we obtain the following

multiplicative relationship for the fluxes:

uw;mwðr; tÞ ¼ uwðr; tÞumwðr; tÞ; uw;mwðr; tÞ ¼ eCw;mw ;

uwðr; tÞ ¼ eCw ; umwðr; tÞ ¼ eCmw : (15)

Due to the quenching, we see that the macroweather

flux has practically no variability at nondimensional space or

time scales< 1 (i.e., smaller than Lw, shorter than sw), thus

uw;mwðr; tÞ ¼ uwðr; tÞumwðtÞ: (16)

If we now average this equation over nondimensional time-

s¼ 1 (i.e., over time scales up to sw), due to the space-time

coupling in the weather regime, this temporal averaging

effectively averages out much of the spatial variability as

well so that

uw;mw;sðr; tÞ ¼ umwðtÞ; sw < s < sc ; (17)

where uw;mw;sðr; tÞ is the temporally averaged flux over a

scale s> sw. Strictly speaking, umw is simply more slowly

varying in space than in time so that umw (r, t)�umw,s (t)
and Eqs. (16) and (17) should be interpreted as indicating

that the type of temporal statistical process is the same at all

spatial locations, this will be clarified in Subsection III D and

in the Appendix. Figure 6(a) shows a realization of the EFIF

model averaged over the model weather scales: 64 neigh-

bouring points 1024 pixels in time (each of duration sw),

compare this with the data in Fig. 2(b) and see Section III D

for more details.

From this analysis and Fig. 6(a), we see that a single

weather/macroweather cascade model will yield macro-

weather fields that are smoother in space than in time, even

though empirically, the data show the converse: strong multi-

fractal spatial variability but nearly quasi-Gaussian temporal

variability (see, e.g., Table II, and Figs. 4(a)–4(f)). This led

Lovejoy and Schertzer (2013) to propose that models of

atmospheric variability valid in the macroweather regime

must include an additional temporally slowly varying space-

time climate process ucðr; tÞ (that only varies significantly at

long time scales s> sc), the consequence of physically dif-

ferent climate processes. The full (weather-macroweather-

climate) model is thus

uw;cðr; tÞ ¼ uw;mwðr; tÞucðr; tÞ: (18)

Since by definition for time scales< sc, the climate process

has ucðr; tÞ � ucðrÞ, over the macroweather regime, we

find
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uw;c;sðr; tÞ ¼ umwðtÞucðrÞ; sw < s < sc ; (19)

where uw;c;sðr; tÞ is the full space-time weather-climate pro-

cess averaged over time scale s and the equality is in the sense

of random variables. See Fig. 6(b) for a realization and Section

III D for more details. This is the macroweather space-time

factorization property of the fluxes, it is compatible with the

scaling and it is predicted by this simple model. Since the

observables (e.g., the precipitation rate) are obtained by frac-

tional integration (power law filters, order H) of the fluxes, we

obtain equivalent space-time factorizations of the observables.

Physically, the interpretation is that the macroweather spatial

variations are associated with different climate zones but that

each zone has the same statistical type of temporal variability

whose origins are in high frequency weather dynamics. In

other words, the climate spatially modulates the atmosphere at

macroweather scales even though the climate temporal varia-

tions are at longer scales. This argument is admittedly hand-

waving and is justified more mathematically in Subsection 2 of

the Appendix where it is found that factorization is only an

approximate symmetry of the EFIF model, although in

Sec. III F we show that it is empirically valid to a very good

approximation; indeed, it provides the theoretical basis of

many otherwise ad hoc “homogenization” techniques.

D. Numerical investigation of the EFIF based
weather-climate process: CEFIF

In Appendix 10A of Lovejoy and Schertzer (2013), the

temporal macroweather structure of the EFIF model was

investigated and it was found to be “pseudo-scaling”; the

autocorrelations drop off with a (leading) Dt–1 behavior.

Such behavior is singular so that, for example, spectra have

characteristics that depend on both the high and low fre-

quency cutoffs—i.e., the range of macroweather scales. The

result was that the process had roughly the low intermittency

H< 0 behavior characteristic of the macroweather regime

with the value of H depending on the range of scales, and

being nearly independent of the weather regime C1, a, and H
parameters. While this analysis clarified some of the statisti-

cal properties of the EFIF model, it did not address the

spatial variability issue nor did it provide a more convincing

FIG. 6. (a) EFIF model with parameters given in Table IV, time series as a function of spatial location (x). The plot shows 64 neighbouring pixels in space

(bottom to top) and 1024 consecutive macroweather time units obtained by averaging at the model scale sw. Notice that there is little spatial variability: from

bottom to top, the series are statistically very similar to each other. Compared to the data (Fig. 2(b)) the spatial variability is too low. (b) The CEFIF model

with parameters given in Table IV, obtained by multiplying the temporally averaged EFIF model shown in Fig. 6(a) by a purely spatial climate process. One

can see that the resulting spatial variability (the variation from series to series) is much more realistic (see the data graph, Fig. 2(b) and see Table IV for the

scaling exponents). (c) The SLIMM model with parameters Ht¼�0.4, Hx¼�0.2 (Table I), C1x¼ 0.1, Table II, also ax¼ 1.8. We see that while each series

has the same type of temporal variability (fractional Gaussian noise, fGn), that the amplitude of the series to series variability clusters due to the multifractal

spatial climate process. Compare this with the data (Fig. 2(b)) and with the EFIF and CEFIF realizations ((a) and (b)).
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(mathematical) investigation of the factorization property.

The mathematical difficulties in analyzing the EFIF model

are underscored in the Appendix that sheds light on the ori-

gins of factorization and the fact that although it is not an

exact symmetry, it is only weakly broken.

We therefore turn to a numerical investigation of both

EFIF properties as well as the weather-climate model

described in Sec. III C, which is obtained by multiplying the

EFIF process by a purely spatially varying (climate scale)

multifractal process. As usual, we are interested in the scal-

ing properties (exponents) and therefore require the largest

possible range of scales, in this case we considered a single

realization of a 27 � 27 � 212 (x,y,t) EFIF process with a cor-

responding 27 � 27 (x,y) climate process (x and y are spatial

coordinates). The results are shown in Table IV, below we

discuss the table row by row, and Figs. 6(a) and 6(b) show

sample realizations of the process. All the parameters in the

table are estimated using Haar fluctuation analysis on the

simulation.

Each pixel represents about 40 000/128� 300 km, and

in time 10 days/128� 2 h, the overall simulation therefore

lasts about 1 year (about 4096/128¼ 32sw). The simulation

is the product of two independent processes: EFIF weather-

macroweather process uw;mwðx; y; tÞ and a pure cascade cli-

mate process ucðx; yÞ; the result is a Climate Extended

Fractionally Integrated Flux process (CEFIF): uw;cðx; y; tÞ
¼uw;mwðx; y; tÞ ucðx; yÞ. For uw;mwðx; y; tÞ and ucðx; yÞ, we

took realizations with nominal parameters a¼ 1.8, and

C1¼ 0.3, 0.1, respectively (compare this to the numerically

estimated C1 parameters in rows 1 and 9). These parameters

are “nominal” in the sense that they are the exponents from

an infinite ensemble of statistically identical processes over

wide ranges of scales (notice also that the H values in rows 1

and 9 of Table IV are not exactly 0 which is their ensemble

average value). In comparison, we considered only a single

realization with a modest range of scaling. In addition, there

are “finite size” numerical issues from the simulation at both

the largest and smallest scales (see Lovejoy and Schertzer

(2010a; 2010b)). The limitations of the model can, for exam-

ple, be seen from the fact that the K(q) function of the prod-

uct of two independent processes is the sum of the individual

K(q) functions, so that the corresponding C1’s also add.

Therefore, we expect C1wc,space¼ 0.3þ 0.1¼ 0.4, and since

ucðx; yÞ has no time dependence, C1wc,time¼ 0.3. Notice (row

5) that this is more or less verified to within the available nu-

merical precision (a single simulation over a finite range of

scales). Note that since ucðx; yÞ has no time dependence, the

temporal exponents (rows 1�4) of the EFIF and CEFIF mod-

els are identical.

Recall that in cascades, the fluxes are conserved from

one scale to another so that H¼ 0. Both ucðx; yÞ as well as

uw;mwðx; y; tÞ in its weather regime (i.e., to time scales less

than 128 pixels) therefore have H¼ 0; in the macroweather

regime, due to the quenching of the spatial degrees of free-

dom, the flux is no longer conserved across scales so that

H< 0 (see rows 3, 4, and 8 and the Appendix). Therefore, in

these regimes (rows 1, 4, 5, 7, and 9), the H 6¼ 0 results are

model artefacts. In the macroweather regime however, there

are nontrivial H values. First, in rows 2 and 3: Ht��0.3 and

�0.4 for pixel and global scales; although these are close to

the observations ��0.4, as mentioned above, they are some-

what sensitive to the macroweather range of scales which

here is only over the scale range 212/27¼ 25. Second, in row

6, the spatial macroweather exponent Hx��0.2 is a bit

higher than Ht so that the spatial macroweather is indeed a

bit smoother than temporal macroweather. However, if the

CEFIF weather-climate model is correct, the EFIF value

Hx��0.2 is not directly measurable since the spatial vari-

ability is dominated by the Hx¼ 0, ucðx; yÞ process (right

hand columns, row 9) with realistic C1 value (row 9 far right

data column). Third, in row 8 for the macroweather anoma-

lies, we have Hx��0.2 which is again close to the GHCN

value (Fig. 8(a)) but only agrees with the large scale 20CR,

Smith values (Table I and Figs. 8(b) and 8(c)).

Overall, it is notable that most of the statistics are sur-

prisingly close to those of real precipitation even though the

numerics are for the precipitation flux (which is not necessar-

ily the same as the precipitation rate) and we could easily

justify the use of extra fractional integrations to yield R from

u. Such integrations could, for example, increase the weather

regime Ht value from 0 in this flux model to �0.15 (CPC

data, row 1) and could also increase the macroweather and

climate values (rows 6 and 7) that are also too low (but

which are poorly estimated from the 20CR and Smith data).

Indeed, we have reasonably reproduced H, C1 values in rows

1, 2, 3, 5, 6, 7, 8, and 9. Even if we discount these excep-

tions, 4 model exponents (Hw, C1w, Hc, and C1c) have pre-

dicted 4 additional precipitation exponents (Hmw,t, C1mw,t,

C1mw,x, and C1c,x) over wide ranges of space-time scales so

that the CEFIF model is quite successful.

E. Directly Modelling macroweather: Multifractal
SLIMM

1. Fractional Gaussian noise and the SLIMM model

The macroweather regime numerics of the EFIF and

CEFIF model combined with the theoretical developments

outlined in the Appendix show that while they seem to be

fairly realistic, the macroweather statistics are theoretically

difficult to handle. In particular, although the empirical tem-

poral macroweather statistics are apparently fairly simple—

nearly quasi Gaussian (small C1) and with Ht< 0, the EFIF

model is not simple. In addition, in order to model the mac-

roweather regime, both models require a significant range of

scales in the weather regime and this is numerically costly.

This is analogous to the usual numerical climate modeling

problem, whereby essentially weather models are integrated

at time steps of several minutes and at fine (�100 km) spatial

resolutions only to be subsequently averaged to yield climate

statistics. Therefore, in order to allow for practical applica-

tions such as macroweather precipitation forecasting, let us

make a pure macroweather model with the minimum ingre-

dients necessary to at least approximately reproduce both the

CEFIF model and the empirical analyses. The resulting

ScaLIng Macroweather Model (SLIMM) can be used to

exploit the long range memory of the system and make sto-

chastic forecasts (see Lovejoy et al. (in press)).
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TABLE IV. The results of the Extended Fractionally Integrated Flux (EFIF) and Climate EFIF (CEFIF) models for the weather-climate process compared with precipitation data. The weather-macroweather model was

on a 128� 1 28� 4096 grid (x,y,t), spatially periodic on a torus, causal in time. Thus each pixel represents about 40 000/128� 300 km, and in time about 2 h, the overall simulation lasting about 1 year (about 4096/

128¼ 32sw). For the temporal statistics (the upper block with four rows of exponents), there is no theoretical difference between the Weather and Weather-Climate since the climate process has no time evolution, the

small discrepancies are due to limited statistics. When the description indicates “pixel” it just means at the full space-time resolution, there was no averaging in space or in time. Time averaging is indicated with a sub-

script “s” indicating the duration, the spatial averaging is indicated by overbars. Since these are fluxes, the nominal simulation values of the two uw;mwðx; yÞ and ucðx; yÞ had H¼ 0 and a¼ 1.8, the C1 values were 0.3 and

0.1, respectively. See Fig. 2(c) for a sample of the data and Figs. 6(a) and 6(b) for realizations of the EFIF and CEFIF models.

Weather (uw;mn) (EFIF) Weather-climate (uw;c) (CEFIF) Data

Row Regime Resolution Symbol H C1 Symbol H C1 H C1

Time 1 Weather (pixel) Single pixela uw;mw �0.06 0.31 uw;c ¼ uw;mwuc �0.06 0.31 0.15b 0.30 6 0.07c

2 Macroweather (pixel) Averaged 128 pixels in timed umw ¼ uw;mw;sw
�0.30 0.09 umwuc �0.30 0.09 �0.4e 0.01�0.02f

3 Macroweather (global) Averaged 128� 128� 128 pixels in space, timeg ðumwÞspace �0.42 0.04 ðumwucÞspace �0.42 0.04 �0.4h 0.01�0.02h

4 Weather (global) Averaged 128� 128 pixels in spacei ðuw;mwÞspace
0.07 0.11 ðuw;mwucÞspace

0.07 0.11 … …

Space 5 Weather Single pixelj uw;mw 0.00 0.34 uw;c ¼ uw;mwuc 0.03 0.42 0.0k 0.39 6 0.10c

6 Macroweather Averaged 128 pixels in timel umw ¼ uw;mw;sw
�0.22 0.04 umwuc 0.03 0.13 0.1�0.2m 0.14 6 0.05c

7 Climate Averaged 4096 pixels in timen umw;sc
0.02 0.02 uc � uw;c;sc

0.06 0.11 0.1–0.2o 0.1560.02p

8 Macroweather Anomaly (difference) … … … ucð1� umwÞ �0.16 0.10 �0.2q 0.10

Climate processr 9 Single pixel … … … uc 0.03 0.12 0.15�0.2o 0.15 6 0.02p

aFit over weather range, i.e., to � sw¼ 128 time units; the nominal theoretical parameters were H¼ 0, C1¼ 0.3, the differences in this row are due to inadequate statistics (the use of only a single realization as well as fi-

nite size effects—at both small and large scales—in the numerics).
bThis value is from the weather regime in Fig. 1. However, its value is not robust since it is sensitive to zero and low rain rates.
cThe average and standard deviation of all the relevant estimates from Table II. Note that the time and space values of C1 are different by about 0.1 as is theoretically expected since the space has the extra variability due

to multiplication by uc.
dSee Eq. (17); as shown in Lovejoy and Schertzer (2013), Appendix 10A, the key macroweather temporal exponent Ht depends on the range of scales sc, Kc. For comparison, the analogous (numerically estimated) Ht

macroweather exponent for Kc 8 times longer (i.e., 512 pixels, not 64), yields �0.17 6 0.10 where the variation is pixel to pixel; the corresponding value for the simulation here is �0.38 6 0.25 (the standard deviation is

the pixel to pixel spread, the difference with the value in the table is because the latter is a fit to the ensemble statistics). These numbers should be compared to the empirical pixel by pixel Ht estimates �0.41 6 0.07,

�0.38 6 0.09, and �0.43 6 0.10 for GHCN, 20CR, and Smith, Sec. II C.
eSee Table I.
fGHCN, 20CR, and Smith, from Table I.
gAveraged over all space, fit over the macroweather range of 300–2048 time units, this is same as space and time averaged to macroweather scales.
hGHCN, 20CR, and Smith, from dLL.
iAveraged over all space, but fit to weather regime (16–250 time units). Globally averaged precipitation products at high enough frequency do not exist.
jFit over weather range; theory: H¼ 0, C1¼ 0.4.
kThis value is from TRMM radar study (Lovejoy et al., 2008), but is sensitive to zero and low rain rate issues.
lAveraged over the weather scales (a bit further, to 512 time units).
mThe raw 20CR, Smith, values from Table I (see Figs. 8(b) and 8(c)). This cannot be estimated from GHCN which has only anomalies.
nThe weather climate process is not sensitive to the averaging length, but the weather only process has H that depends somewhat on the temporal averaging length.
oThis is the raw long term value (the bottom of the top set of curves in Figs. 8(b) and 8(c)).
p20CR, Table III, average of the 0�–30� N and 30�–60� N values.
qFrom GHCN, Fig. 8(a). The anomalies from the 20CR and Smith data have both Hx�þ0.1, 0.2 regions (less than� 4000–7500 km) and regions close to �0.2 (slope n(2)/2��0.3 indicated at large spatial scales in

Figs. 8(b) and 8(c). The large scale value (Hx¼�0.2) in common with the GHCN anomaly value was thus taken as the most likely true value.
rThis is a space only process, the nominal theoretical parameters were H¼ 0, C1¼ 0.15.
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In the temporal domain, we take the simplest noninter-

mittent model—a Gaussian—so that we pay special attention

to the second order statistics characterized by autocorrelation

functions (“c”). With this Gaussian approximation, and since

�1<H< 0, we are led to the fractional Gaussian noise

(fGn) process

GH tð Þ¼ kH

C 1=2þHð Þ

ðt
�1

t� t0ð Þ� 1=2�Hð Þ
c t0ð Þdt0; H< 0 ; (20)

where C is the usual gamma function (not to be confused

with the cascade generator) and kH is a constant (see below).

The innovations c are taken as zero mean (hcðtÞi ¼ 0)

Gaussian white noise processes having an autocorrelation

ccðDtÞ ¼ hcðt� DtÞcðtÞi ¼ dðDtÞ; (21)

so that c is a temporally “delta correlated” Gaussian white

noise process, the integration in Eq. (20) is a temporal frac-

tional integral of order 1
2
þH of c (by inspection, we see that

it is causal since the process at time t depends only on the

innovations for t0< t). While at each point in space, GH is an

fGn process; its (order one) time integral is a (more familiar)

fractional Brownian motion with parameter 1þH.

If we define the s resolution process by averaging

GH;s tð Þ ¼ 1
s

Ð t
t�s GH t0ð Þdt0 and we define the constant

kH ¼ p
2 cos pHð ÞC �2H�2ð Þ
� �1=2, we obtain the simple and exact

result for the resolution s autocorrelation function

cG;s Dtð Þ ¼ hGH;s tð ÞGH;s t� Dtð Þi

¼ s2H

2
kþ 1ð Þ2Hþ2 þ k� 1ð Þ2Hþ2 � 2k2Hþ2

h i
;

k ¼ Dt

s
; k � 1; �1 < H < 0 (22)

which for large Dt is

cG;sðDtÞ � ðH þ 1Þð2H þ 1ÞDt2H; Dt	 s; �1 < H < 0

(23)

and the variance (cG,s(0))

hGH;sðtÞ2i ¼ s2H; �1 < H < 0; (24)

these results are reviewed in Lovejoy et al. (in press) (for a

full mathematical overview see Biagini et al. (2008)). From

Eq. (24), we see that fGn diverges in the small scale limit

(s! 0). Also, since GH is a Gaussian with mean zero and

H< 0, the fluctuation over scale s is equal to the mean anom-

aly, itself equal to GH,s so that in the previous “D” notation

for fluctuations, DGHðsÞ ¼ GH;s. Finally, the variance and

autocorrelation function determine all the one and two point

statistics (including the qth order moments), so that we

obtain for the structure function

hjGH;sjqi ¼ hjDGHðsÞjqi / snðqÞ; nðqÞ ¼ qH; �1 < H < 0

(25)

(independent of t since GH is statistically stationary). We use

Eq. (25) below.

The extension to spatial processes is straightforward,

although many options are possible. The simplest is to

assume statistical isotropy in d spatial dimensions and to

integrate over all space

GH rð Þ ¼
kH;d

C d=2þ Hð Þ

ð
Rd

jr � r0j� d=2�Hð Þc r0
� �

ddr0;

�1 < H < 0; (26)

where the constant kH,d depends on d (kH, given above, was

the causal d¼ 1 value) and where c is delta correlated in space

FIG. 7. (a) The space-time spectral densities Pxt(k,x) for the 20CR monthly

precipitation product over the period of 1871–2012. The horizontal axis is

for the frequencies (in units of cycles/141 years), the vertical axes are for the

zonal wavenumbers (up to 6180� longitude). Contours of the spectral den-

sities for latitudes 0� to 30�N, and 30� to 60�N are shown on bottom and

top. Note the annual cycle and the harmonics (the regularly spaced spikes).

Note that the contour lines are generally parallel to the axes as expected by

the factorization property. (b) A direct test of the factorization hypothesis

for the spectra analysed in (a). Each line shows the ratio of zonal wavenum-

ber–frequency spectral density Pxt(k,x) to the product of the zonal only

Px(k) and frequency only Pt(x) densities for zonal wavenumbers increasing

in octaves from bottom to top. Each section is displaced by a factor e0.5 in

the vertical and the shading alternates for clarity. The frequency units are

(months)�1 and the wavenumber units are cycles per half-circumference

(due to the latitudinal dependent map factor, about 20 000 km on the left,

about 14 100 km on the right). The constancy of the ratio is remarkable

when it is considered that the total variation (maximum/minimum) of

Pxt(k,x) over the range of (k,x) in this figure is� 107.
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ccðDrÞ ¼ hcðr � DrÞcðrÞi ¼ dðDrÞ: (27)

We can now combine the spatial and temporal fractional

integrations to obtain the space-time fractional Gaussian

noise model

umw r; tð Þ ¼
kHx;d

C d=2þ Hxð Þ
kHt;1

C 1=2þ Htð Þ

ð
Rd

ðt
�1

jr � r0j� d=2�Hxð Þ

� t� t0ð Þ� 1=2�Htð Þ
c r0; t0
� �

dt0ddr0;

�1 < Ht < 0; �1 < Hx < 0 (28)

umw is a model of the pure macroweather process, i.e., valid

only at time scales> sw and not taking into account any spa-

tial or temporal variability due to climate scale processes. In

Eq. (28), c(r,t) is a delta correlated space-time noise

ccðDr;DtÞ ¼ hcðr � Dr; t� DtÞcðr; tÞi ¼ dðDrÞdðDtÞ: (29)

For the process averaged at spatial resolution l and temporal

resolution s, the autocorrelation is therefore

cu;mwðDr;DtÞ / jDrj2HxDt2Ht ; jDrj 	 l; Dt	 s;

�1 < Hx < 0; �1 < Ht < 0; (30)

i.e., ignoring constant factors (see Eq. (23)).

At the same time, the amplitude of the fluctuations at

resolution l, s is

hjumw;l;sj
qi / lnxðqÞsntðqÞ; nxðqÞ ¼ Hxq;

ntðqÞ ¼ Htq; �1 < Hx < 0; �1 < Ht < 0 (31)

(see Eq. (24); the constants in Eq. (28) are chosen so that the

proportionality becomes an equality in the case q¼ 2 and

note the special case: hu2
mw;l;si ¼ cu;mwð0; 0Þ). From Eqs.

(30) and (31), we see that the statistics hjumw;l;sj
qi satisfy the

space-time factorization property.

From row 6, Table IV, we see that the EFIF spatial mac-

roweather behaviour is itself not far from a fractional

Gaussian noise (c.f. row 6 with Hx��0.2, C1x� 0, i.e.,

somewhat smoother than the corresponding values Ht

��0.3, �0.4, C1t� 0—rows 2 and 3—but still not really

smooth). If this is correct, it would imply that we could take

cu;mwðDr;DtÞ ¼ jDrj2HxDt2Ht with Ht¼�0.4, Hx¼�0.2, see

also the empirical values in Table II which are close.

From Eq. (23) and since hcðr; tÞi ¼ 0 and Ht< 0, we see

that long time averages of umw will converge to zero (recall

that since Ht< 0, the averages are good definitions of fluctu-

ations). Therefore, this is a model for precipitation anoma-
lies; we return to this below.

Since the structure function exponents are linear (Eq.

(31)) we have Kx(q)¼Kt(q)¼ 0, so that the process is not

cascade-like. In time, this behaviour is a reasonable approxi-

mation since C1t� 0; however in space, we saw that the

empirical behavior is reasonably intermittent, multifractal

behavior with C1x� 0.15 (see Tables II and IV), and the space-

time statistics separate into spatial and temporal factors. Hence

as in the CEFIF model, we multiply the process by the flux of

a conservative “climate regime” cascade uc

huc;l rð Þqi � kKx qð Þ / l�Kx qð Þ; k ¼ Lw

l
; (32)

where k is the scale ratio of the outer cascade scale Lw to the

resolution l (in this theoretical discussion, for simplicity, we

take Leff¼ Lw). The corresponding correlation function is

cc;l Drð Þ ¼ jDrj
l

� ��Kx 2ð Þ

; jDrj > l (33)

(where for simplicity we have assumed that the process is

statistically isotropic, the horizontal scale depends on the

vector norm which is isotropic).

As above, the overall model for the flux is thus the prod-

uct of the climate process with the macroweather process

uw;c;l;sðr; tÞ ¼ uc;lðrÞumw;l;sðr; tÞ (34)

(here and below we neglect the very slow temporal variabili-

ty of the climate process so that we take uc,l(r)), so that

hjuw;c;l;sðr; tÞjqi ¼ hjuc;lðrÞjqihjumw;l;sðr; tÞjqi
/ lnxðqÞsntðqÞ; nxðqÞ ¼ qHx�KxðqÞ;

ntðqÞ ¼ qHt;�1<Hx < 0; �1<Ht < 0 (35)

the autocorrelations also multiply

cw;c;l;sðDr;DtÞ ¼ cc;lðDrÞcwm;l;sðDr;DtÞ ¼ jDrjnxð2ÞDtntð2Þ:

(36)

Notice that by simple multiplication of the fractional

Gaussian noise process with a conservative (H¼ 0) multi-

fractal process (uc,l), we have obtained a process with an

extra Kx(q) term. This method only works because Hx< 0; if

Hx> 0, then neither Eqs. (30), (31), (36) are valid and to

obtain a process with linear part of nx(q)¼ qHx�Kx(q) one

must instead fractionally integrate uw,c,l,s(r,t) (Eq. (34))

directly.

2. The precipitation anomaly process

Although uw,c was obtained multiplicatively as a flux

(essentially the fractional integration was done before the

product was taken rather than afterwards as in the H> 0 tur-

bulence FIF model), we can already take it as a model for

the precipitation anomaly, hence we can take the dimen-

sional process

Rw;c;l;sðr; tÞ ¼ ranomL�Hx
w s�Ht

c uw;c;l;sðr; tÞ
¼ ranomL�Hx

w s�Ht
c uc;lðrÞumw;l;sðr; tÞ;

l � Lw; sw � s � sc; (37)

where Lw and sc are the largest spatial and temporal scales

over which the scaling is obeyed. If we take l¼ Lw, we have

k¼ 1 and hjuc;Lw
ðrÞjqi ¼ 1 (Eq. (32)) while humw;Lw;sc

ðr; tÞ2i
¼ L2Hx

w s2Ht
c (Eq. (31)). We therefore see that ranom is the

standard deviation of the largest scale anomalies:

hRw;c;Lw;sc
ðr; tÞ2i1=2 ¼ ranom (also, since humw;Lw;sc

ðr; tÞi ¼ 0,

the mean anomaly is zero: hRw;c;l;sðr; tÞi ¼ 0). From dLL, we
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find that for global series (i.e., scale Lw) and sc� 20 years

(the rough outer limit of the macroweather scaling regime)

that ranom� 1 mm/month.

Figure 6(c) shows a realization of the resulting space-

time SLIMM process in d¼ 1 spatial dimensions. We can

see that the realization is indeed quite similar to the CEFIF

simulation (Fig. 6(b)) and the data (Fig. 2(b)) in that each

location has the same type of variability but with amplitudes

strongly varying from one location to another.

3. The raw precipitation process (anomaly plus
climatological values)

Rw;c;l;sðr; tÞ is a model of the anomalies, we also need to

model the “raw” rain rate (i.e., the actual, absolute rainrate

with only the annual cycle removed). Since the amplitude of

Rw;c;l;sðr; tÞ decreases with averaging, for large enough s (but

still small enough that we can ignore longer term, slow

climate scale variations), we can take

Rraw;l;sðr; tÞ ¼ Rc;lðrÞ þ Rw;c;l;sðr; tÞ; (38)

where Rc,l(r) is the climatological average rain rate. From

Figs. 4(c)–4(f), we saw that the long term average precipita-

tion field (our estimate of the climatological rainrate Rc,l(r))

had very nearly the same spatial statistical variability (spatial

exponents) as for the spatial anomalies, hence the simplest

model for Rc,l(r) is to take

Rc;lðrÞ ¼ lclimuc;lðrÞ: (39)

Since hjuc;Lw
ðrÞjqi ¼ 1 we see that lclim is the global scale,

long term climatological rain rate: lclim ¼ hRc;Lw
ðrÞi, accord-

ing to the data in dLL, lclim� 80 mm/month (differing only

slightly between the Smith and 20CR global series).

By calculating the variance of the raw rainrate (Eq.

(38)), we can now consider its overall statistical dependence

on the space-time resolution

hRraw;l;s r;tð Þ2i¼
l

Lw

� ��Kx 2ð Þ
l2

climþr2
anom

l

Lw

� �2Hx s
sc

� �2Ht

 !
:

(40)

Equation (38) states that at any given space-time scale, the

anomalies fluctuate about the climatological mean; if the

typical fluctuations are larger than the mean, then the model

implies impossible negative raw rainrates. According to Eq.

(40), when lclim 	 ranom
l

Lw

� �Hx s
sc

� �Ht this will occur very

rarely, since empirically,
lclim

ranom
� 80, negative rain rates will

clearly not be a problem at the largest scales l¼ Lw, s¼ sc.

However, if we take s¼ sw� 4 days (the smallest time scale

at which the model is valid) so that sc/sw� 2000, then

assuming Ht¼�0.4, Hx¼�0.2 (Table I) we find that below

a critical spatial resolution of �10 km the model implies fre-

quent zeroes. Alternatively, as long as we stick to spatial

scales larger than about 10 km and to time scales over mac-

roweather time scales, the model will yield a positive raw

rain rate and will be consistent with all the known statistics

at scales s> sw. Of course, if needed, negative raw rain rates

can be truncated to zero, but this becomes problematic if the

support (the nonzero part) becomes small.

4. Factorization and the statistical homogenization
of climate data

In the calculation of drought indices (and in many other

applications), one seeks to characterize whether the rain rate

is low with respect to the “usual” local precipitation statis-

tics; in other words, one seeks to homogenize precipitation

series from stations that are climatologically different. A typ-

ical approach is to normalize the anomalies by dividing by

the local standard deviation so as to obtain anomalies with

essentially identical statistics (notice this implicitly assumes

the statistical space-time factorization property).

To see how factorization works on our model, consider

a single realization of the process, and a point r and then av-

erage the anomaly standard deviation over long times (i.e.,

to obtain a series at resolution sc)

rR;sc
ðrÞ ¼ L�Hx

w ranomuc;lðrÞ; (41)

where we have used the result that the long time average

over sc is approximately given by the ensemble average, and

then used Eq. (23) to scale it to the low resolution sc. The

“homogenized” process is thus obtained by normalizing the

anomaly by its long term local variance

ðRw;c;l;sðr; tÞÞhom ¼ Rw;c;l;sðr; tÞ=rR;sc
ðrÞ � s�Ht

c umw;l;sðr; tÞ;
(42)

which is a simple (statistically spatially homogeneous)

space-time fGn process so that the inhomogeneity introduced

by the climate process uc,l has been removed. Using rR,sc
(r),

we have therefore obtained a “homogenized” process whose

statistics are the same everywhere (this is a consequence of

the space-time factorization which is exactly satisfied by the

model). Note that this works as long as Ht is independent of

spatial location; while this is apparently reasonable for pre-

cipitation, it is a poor approximation for the temperature field

which involves spatially varying Ht. For other fields such as

the latter, a more complex normalization is needed that takes

into account the spatially varying Ht value.

The rainrate anomaly process R(r,t) is the spatial exten-

sion of the basic SLIMM described in Lovejoy et al.
(in press) and with temporal exponent Ht the same every-

where in space. It was motivated by the CEFIF model. It is

approximate since the CEFIF is not exactly an fGn process,

and because of the assumption that the spatial variability

mostly derives from a low frequency multiplicative climate

regime process (an admittedly ad hoc model choice). While

we have assumed that Ht is constant in space, the relaxation

of this assumption is important in application to macro-

weather forecasting and will be discussed elsewhere.

To summarize: the model for R(r,t) describes macro-

weather precipitation variability as a fractional Gaussian

noise process with spatially correlated amplitudes. The

space-time statistics factor into separate spatial and temporal

functions. Over periods over which uc can be considered in-

dependent of time (i.e., Dt< sc, less than decadal, centennial
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scales), the spatial correlations are determined by uc,l(r)

which is a single realization of a multifractal climate process

at resolution l. It takes into account the geographical varia-

tion which include notably the multifractal topography

(Gagnon et al., 2006). At each spatial location, the time se-

ries is a fGn process parameter Ht with standard deviation

given by rR,sc
(r) and depending on the temporal resolution

via sHt. In this way, the local statistics of the precipitation

anomaly are determined in a multiplicative way by the

climate process uc,l(r). This justifies the simple expedient of

normalizing (nondimensionalizing) the precipitation process

at each spatial location by the standard deviation estimated

from the time average at r: rR,sc
(r) (see Eq. (41)).

F. Empirically testing the statistical space-time
factorization property

The space-time spectral density (“Pxyt”) corresponding

to the autocorrelation Eq. (36) is

Pxytðk;xÞ ¼ F:T:ðcRðDr;DtÞÞ / ðF:T:ðcxðDrÞÞÞðF:T:ðctðDtÞÞÞ
� PxyðkÞPtðxÞ � jkj�sxx�bt ; ð43Þ

sx ¼ bx þ d � 1; bx ¼ 1þ 2Hx � Kð2Þ; bt ¼ 1þ 2Ht ;

which is expected to be valid for s�1
w < x < s�1

c and where

“F.T.” means Fourier transform. This is the Wiener-

Khinchin theorem relating the spectral density and the auto-

correlation, d¼ 2¼ the dimension of x, y space.

In order to test this, we can simplify by considering

zonal wavenumber frequency spectra. First, consider only

the zonal direction (wavenumber k). If factorization holds,

then Pxtðk;xÞ ¼ PxðkÞPtðxÞ and the density Pxtðk;xÞ will

have iso-density contours parallel to the k, x axes. Figure

7(a) shows the result for the 20CR reanalysis data, consider-

ing two latitudinal bands. Although the contours are noisy,

they are fairly parallel to the axes hence they are compatible

with statistical factorization. At the lowest 3 or so available

frequencies (i.e., �30–40 year scales) factorization breaks

down—the beginning of the climate regime—the vertically

aligned contours near the centre of the plot. Elsewhere we

show that this factorization behavior is reasonably well

reproduced by GCM’s although with somewhat different

amplitudes and spatial scaling laws. A figure very similar to

this, showing the factorization of space-time macroweather

temperature spectra, was given in Lovejoy and Schertzer

(2013), in section 10.3.

In order to investigate this further, we can directly check

the constancy of the ratio Pxtðk;xÞ=ðPxðkÞPtðxÞÞ; the result

is shown in Fig. 7(b) (see Fig. 9 for the corresponding plot

for the CEFIF simulation). Over the range of k, x shown, Pxt

varies by a factor of �107 while the ratio remains quite con-

stant. To judge this, consider the various horizontal sections

shown in the figure that are for k increasing by factors of two

(bottom to top). We see that except for the lowest frequen-

cies, the ratio is very constant, especially for the 30�–60�N
band (right). For example, the variations about the bottom

right line are only 620%.

We can also check the factorization directly in real

space using joint space-time Haar fluctuations. In this case,

for the RMS fluctuations we expect the joint S(Dx,Dt) to be

the product of a spatial function Sx and temporal function St

SðDx;DtÞ ¼ SxðDxÞStðDtÞ (44)

(in the analyses, we actually use the zonal angle so that the

symbol Dx is the longitude subtended by an arc on the

earth’s surface).

In order to facilitate the interpretation of the results, we

can use the fact that in the time domain the fluctuations

decrease with scale, hence if we simply average the anoma-

lies over longer and longer time scales, the resulting averages

are virtually the same as the corresponding Haar fluctuation

(the differencing in Eq. (1) has little effect when H< 0). In

space, we use the usual (spatial) Haar fluctuation of the tem-

porally averaged data. For the GHCN data, this joint space-

time analysis is shown in Fig. 8(a). We see not only that the

curves are parallel for different amounts of averaging—the

basic factorization prediction—but also that as we double

the averaging time Dt the curves are roughly equally spaced;

this demonstrates the scaling in time. In addition, the structure

functions are more or less linear on the log-log plot so that

there is also scaling in space. Overall we have Eq. (44) with

SxðDxÞ � Dxnxð2Þ=2; StðDtÞ � DtHt ; (45)

with nx(2)/2��0.3, Ht��0.4. Taking Kx(2)/2�C1� 0.1

(see Eq. (6) and Table II) we have Hx��0.2. Notice that

since the temporal fluctuations are estimated by simply aver-

aging the anomalies (q¼ 1), the spacing in the vertical

allows us to directly infer Ht. In contrast, the RMS spatial

fluctuations have exponent nx(2)/2 which is a poor approxi-

mation to Hx due to the large spatial intermittency; it requires

the correction Kx(2)/2 (see the estimates in Table II).

In Fig. 8(b), we show the analogous plot for the Smith

product. Once again, the curves for different averaging times

(top to bottom) are roughly equally spaced as predicted by

Eq. (44); and the reference lines are spaced at factors 4�0.45

(corresponding to Ht¼�0.45, with a factor 4 of temporal

averaging, the same reference lines as the GHCN, Fig. 8(a)).

However, up to 80� the slopes are very different:

nx(2)/2�þ0.2, hence Hx� 0.1, rather than nx(2)/2��0.3

for the GHCN anomaly (Fig. 8(a)) although there is evidence

for large scales that nx(2)/2��0.3, i.e., the same as the

GHCN exponent. In addition, the Smith anomaly also

respects the factorization property, and the Smith Hx� 0.1

(Table I) is very close to those of the spatial satellite IR fields

of the type that were used in its construction (with Hx� 0.2;

see Lovejoy et al. (2009)). Finally, Fig. 8(c) shows the corre-

sponding plot for the 20CR data. It is fairly close to the

Smith data, although with slightly different parameters. In

addition, the temporal scaling breaks down between about

10 and 20 years (128 and 256 months).

Also shown in Fig. 8(b) are the corresponding analyses

for the raw rain rates averaged over 1, 2, 4,…, 512 months.

We see that after about a year of temporal averaging the sta-

tistics have nearly converged to their long term values: the
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spatial variability of annual averaged precipitation is nearly

the same as for centennial averages.

Note that, when performing averaging on anomalies (the

bottom curves), as explained above, since Ht< 0, the result

is close to the corresponding Haar fluctuation. However, this

is not true when averaging the raw data so that the top curves

are not joint space-time Haar fluctuations, but simply spatial

Haar fluctuations at various temporal resolutions. In fact,

there is a difference in the anomalies and raw statistics in

space, but not in time (see dLL for details), hence the differ-

ent exponent estimates in Tables III and IV.

IV. DISCUSSION AND CONCLUSIONS

Over the last decades, there have been numerous scaling

analyses of precipitation and other atmospheric fields, so that

several fundamental aspects of atmospheric dynamics have

been clarified. For example, over time scale ranges from

weather scales up to �100 kyrs (ice-age scales), there is an

intermediate macroweather regime which is, in between the

familiar weather and climate, roughly spanning the range of

10 days to 30 years (industrial, 100 years or longer, preindus-

trial). The three regimes alternate in their basic characters. In

the weather and climate regimes, average fluctuations tend to

FIG. 8. (a) The log10 of the RMS structure functions of GHCN (anomalies) in the zonal (EW) direction (units: mm/month) for averaging times increasing from

top to bottom by factors of 2 (in months). The longitudinal angle subtended is indicated: Dh (i.e., an angular “lag” rather than a distance, the data were from lat-

itudes between 645� so that the difference is not very important), this was indicated Dx in the text. One can see that up to the limit of the macroweather regime

(in red—thick line—about 256 months, i.e., �20 years) the effect of averaging is essentially to systematically decrease the spatial structure function but with-

out changing its shape (in this case, reasonably close to a power law fall-off). In addition, the dashed reference lines slopes nx(2)/2��0.3, corresponding to

Hx��0.2 (since C1� 0.1, see Table II) are spaced so as to correspond to a factor 4�0.4, i.e., the theoretical spacing for two curves with a factor of 4 different

in averaging time and with Ht¼�0.4. This indicates that the joint structure function S(Dx,Dt) satisfies Eq. (44), i.e., the predicted macroweather

“factorization” property. (b) The RMS spatial structure function of the temporal analyses of the Smith product (units: mm/month). The bottom (black) is for

the Smith anomalies, it is the analogue of the GHCN analysis (Fig. 8(a)), these approximate the joint space-time structure function S(Dx,Dt). Once again, the

curves for different averaging times (top to bottom) are roughly equally spaced as predicted by Eqs. (44) and (45): the reference lines are spaced at factors

4�0.4 as in Fig. 8(a) (corresponding to Ht¼�0.2, and a factor 4 of temporal averaging, the same temporal scaling as the GHCN). However, the slope is very

different: nx(2)/2�þ0.2 (hence Hx� 0.1) rather than nx(2)/2��0.3 for the GHCN anomaly, see Fig. 8(a), so that—at least for scales below 80�—the Smith

anomaly (corresponding to the dashed lines on the left) has very different spatial statistics than the GHCN data. However, there is some indication (the far right

reference lines with slopes nx(2)/2¼�0.3 corresponding to Hx��0.1) that the differences may not be important at large scales (in accord with the direct com-

parison in dLL). The top (pink) are the corresponding analyses for the raw rain rates averaged over 1, 2, 4,…, 512 months (top to bottom) and the top dashed

line nx(2)/2¼ 0.3 is the estimate of the spatial climate exponent, see row 7, Table IV. (c) The same as (b) but for the 20CR data (1871–2012), and averaging

data over all latitudes between 645�. The dashed lines have the indicated slopes corresponding to nx(2)/2¼ 0.35 and the vertical spacing corresponds to

nt(2)/2¼�0.45 (every factor of 4 in time scale). These are consistent with the estimates in Tables I and II of Hx¼ 0.2, C1x¼ 0.15 and Ht¼�0.42, C1t¼ 0.03

(taking a� 2 in both cases). The anomalies show reasonable scaling with positive slopes up to about 50� after which there is some indication (the far right ref-

erence lines with slopes nx(2)/2¼�0.3 corresponding to Hx��0.2) that the differences with respect to the GHCN anomalies may not be important at large

scales (in accord with the direct comparison in dLL). For the anomalies (black, bottom set), the temporal scaling is reasonably well respected up to 128 months,

but for averaging over 256, 512 months, the scaling is badly broken, these lines are indicated “256,” “512” are thin. The raw data (top, pink) are also reason-

ably scaling and correspond to averaging from one month to 512 months, roughly with spatial exponent nx(2)/2¼ 0.35, Hx¼ 0.2, see Table IV, row 7.
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grow with scale (H> 0), they appear unstable. In contrast, in

the macroweather regime they decrease with scale (H< 0),

they appear stable. A recent analysis (Lovejoy, 2014) finds

that this alternation continues through two larger scale (mac-

roclimate and megaclimate) regimes out to time scales of

over 500 Myrs.

Scaling analyses of macroweather precipitation have

mostly used monthly station data and the analyses have often

used difficult to interpret statistical methods (such as the

Detrended Fluctuation Analysis technique), and this has hin-

dered the emergence of a clear overall picture of annual,

decadal, and centennial scale precipitation variability.

Surprisingly, with the exception of dLL, there have been no

attempts to characterize the spatial macroweather variability

nor—the focus of this paper—the more fundamental joint

space-time macroweather variability needed to construct

space-time macroweather models (in contrast, there have

been many spatial scaling analyses of precipitation in the

weather regime).

Due to the extreme precipitation variability (high multi-

fractal intermittency), the statistics have strongly nonclassi-

cal behaviors. An important (near) exception is the temporal

macroweather variability that has a small C1 (this character-

izes the intermittency near the mean) and is therefore not too

far from being quasi-Gaussian, see Table II (although the

extremes are apparently quite non-Gaussian: power laws).

Indeed of all the usual atmospheric fields, both at weather

and macroweather scales, precipitation has the largest C1.

This intermittency, combined with the long range statistical

dependencies implied by the scaling has seriously hampered

conventional attempts (such as the decadal trend estimates in

the IPCC AR4) to demonstrate the existence of anthropo-

genic increases in precipitation, and this in spite of simple

and direct physical, theoretical connections between

increased temperatures and increased precipitation. Since the

conventional station precipitation series such as the GHCN

product are for land only, in addition to this product, we also

studied the globally complete 20CR product (Compo et al.,
2011) and the satellite based “Smith” (Smith et al., 2012)

global precipitation product.

The global space-time scaling up to planetary scales and

lifetimes of planetary structures (Fig. 3) allows the atmos-

phere to be modeled up to those scales using the stochastic

Fractionally Integrated Flux (FIF) model. Motivated by its

success at weather scales (s< sw), it was extended to much

longer time scales: the EFIF model. The long time properties

of EFIF (s> sw) (some of which are worked out in Appendix

10A of Lovejoy and Schertzer (2013)) are that one generi-

cally obtains temporal macroweather exponents H in

the range �0.5<Ht< 0 (especially, in the range

�0.4<Ht<�0.2). As we explore in the Appendix, the EFIF

model outlined in Sec. III C also predicts that a statistical

space-time macroweather factorization property should

approximately hold, a property that was verified on tempera-

ture data in Lovejoy and Schertzer (2013) and that is rou-

tinely used in practical climatology when series are

“homogenized” by using their local variances. From a physi-

cal point of view, the main problem with the EFIF model is

that it predicts fairly smooth spatial macroweather fields;

whereas in reality they are much more variable (intermittent)

in space than in time. This corresponds to the existence of

different climate “zones” that modulate the local weather

and macroweather. Respecting the space-time factorization

and the multiplicative structure of the model, it was proposed

that a more realistic model would result if a very low

frequency multifractal climate process modulated the weath-

er–macroweather EFIF model. The result weather–climate

process is called the Climate EFIF model, CEFIF. It was

numerically investigated in Sec. III D and—within the limi-

tations of the numerics and the data—was found to explain 8

or more spatial and temporal exponents even though the

model only had 4 exponents.

In order to get good macroweather statistics with the

CEFIF model, the weather regime must be simulated and

then averaged out, this makes it numerically cumbersome. In

addition, the theoretical macroweather properties of the

model are difficult to handle and analyze. We therefore

developed another purely macroweather model (with ready

extensions to the lower frequency climate regime). This was

based on a recent paper (Lovejoy et al., in press) showing

how individual macroweather time series (using the example

of the mean global scale temperature) can be modeled using

fractional Gaussian noise (fGn). fGn is the simplest relevant

scaling process with Ht< 0 (its order one integral is the more

familiar fractional Brownian motion); the resulting model

was called SLIMM. In Sec. III E, we therefore derived the

space-time SLIMM model with spatially uniform Ht notably

respecting space-time factorization. This space-time SLIMM

involves temporal fGn processes at each spatial location with

amplitudes spatially correlated according to a very low fre-

quency spatial multifractal climate process; the prediction

problem has therefore been solved for the SLIMM model.

SLIMM is for anomalies; to extend the model to the raw rain

rates we added a climate process proportional to the same

process that modulates the anomalies from one location to

another. Empirically and theoretically, this was shown to be

realistic over the entire macroweather range. In this simplest

version of the model, the long term average (climate) rain-

rates have exactly the same spatial variability as the standard

deviations of the rainrate anomalies.

In the spectral domain, the space-time factorization

implies that the spectral density approximately verifies

Pxyt(kx,ky,x)¼Pxy(kx,ky) Pt(x), a property that we demon-

strated on the 20CR precipitation data. For simplicity consid-

ering only latitudinal variations (wavenumbers kx), we found

that over ranges of kx, x where Pxt(kx,x) varies by a factor

107, the ratio Pxt(kx,x)/(Px(kx) Pt(x)) varies by typically

620%. In real space, factorization predicts that joint struc-

ture functions should also decompose into separate spatial

and temporal factors, a property that we confirmed on all

three datasets. Physically, the interpretation is that spatial

variations in macroweather statistics are controlled by differ-

ent “climatic zones” which modulate the otherwise qualita-

tively similar (scaling) temporal variability. This property is

already implicitly widely used, for example, when local cli-

mate states are “homogenized” by nondimensionalizing their

statistics (including probabilities) by using standard devia-

tions of local anomaly fluctuations.
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The work described here clarifying and modeling

space-time macroweather precipitation variability is a nec-

essary step not only for understanding macroweather precip-

itation and the limitations of the corresponding precipitation

products but is also necessary in the stochastic forecasting

of macroweather fields. The potential of such forecasts is

great since the temporal scaling implies that in macro-

weather there are strong long range memories that can

potentially be exploited. This promises to overcome many

of the limitations of conventional (deterministic) GCM

climate forecasts.
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APPENDIX: FACTORIZATION IN THE EFIF MODEL

1. The one point weather and macroweather statistics

a. Weather regime

In chap. 10, Lovejoy and Schertzer (2013) gave a mostly

intuitive argument for factorization of the space-time statisti-

cal properties of macroweather. In this Appendix, we give

the argument in more mathematical detail.

First, recall the properties of the (unit amplitude,

extremal) Levy noise c(r,t) index 0� a� 2

Kc qð Þ ¼ log heqci ¼ qa

a� 1
; 0 � a � 2 ; (A1)

where Kc is the second (Laplacian) characteristic function of

c; a¼ 2 is the Gaussian limit used in SLIMM, a< 2 are the

infinite variance Levy cases, r¼ (x,y) is the horizontal, and t
is time. When a< 2, the c must be maximally asymmetric so

that only the negative side of the c distribution has a power

law probability tail (hence the adjective “extremal”), i.e., it

has a probability density pðcÞ � jcj�a�1; c
 �1 .

A basic property of second characteristic functions

(SCF) is that for sums of independent identically distributed

random variables, they are additive

C r; tð Þ ¼ N

ð
g r � r0; t� t0
� �

c r0; t0
� �

d2 r0dt0;

KC qð Þ ¼ log heqCi ¼ Naqa

a� 1

ð
g r0; t0
� �a

d2r0dt0; (A2)

where g� 0 and N is a normalization factor introduced for

convenience. If we now take

gðRÞ ¼ HðtÞR�d=a; R ¼ ðr; tÞ; R ¼ jRj ¼ ðr2 þ t2Þ1=2;

r ¼ ðx; yÞ; r ¼ jrj ¼ ðx2 þ y2Þ1=2; ðA3Þ

where d¼ 3 (the dimension of (x,y,t) space) and H is the

Heaviside function needed for causality (H(t)¼ 1, t� 0;

H(t)¼ 0, t< 0).

Applying the above to the weather regime (see Fig. 5(b)

for the region of integration)

KC;w qð Þ �
Naqa

a� 1

ð1
K�1

w

ð
Xd

R�3=að ÞaR2dRdX ¼ Naqa

a� 1
Xd log Kw;

(A4)

where dX is an element of solid angle and Xd is the solid

angle of a half sphere (¼2p; the half is due to the Heaviside

function). The volume of integration has been taken to be the

region between concentric (half) spheres with radii Kw
�1 and

1 (with t� 0), which is approximately the (cylindrical)

region indicated in Fig. 5(b) for the weather regime. We now

obtain

huq
Kw
i ¼ heqCwi ¼ eKw qð Þ ¼ K

C1
a�1

qa

w ; C1 ¼ NaXd : (A5)

The reason for the choice of exponent �d/a in Eq. (A3) is

now clear; it leads to the required log divergence of KC,w

with cascade scale ratio Kw (Eq. (A4)). To obtain the qth

moment of the universal multifractal (Eqs. (9) and (10)), we

need only to normalize the process

huq
Kw
i ! huq

Kw
i=huKw

iq;

Kw qð Þ ! Kw qð Þ � qKw 1ð Þ ¼ C1

a� 1
qa � qð Þ: (A6)

b. Macroweather regime

We have calculated the statistical properties of the

“bare” weather regime cascade, i.e., the properties at the

highest resolution of a cascade developed over a scale range

Kw and then stopped. In practice, we are usually interested in

the “dressed” properties, i.e., the statistics of a cascade

developed over a wide range but then averaged to an inter-

mediate scale ratio 1< k<Kw. For these multiscaling, multi-

fractal cascades the only difference between the bare and

dressed properties is that the latter generally have stronger

extremes; divergence of statistical moments high order than

a critical value qD (for precipitation qD� 3 see Table 5.1b of

Lovejoy and Schertzer (2013) and dLL for weather and mac-

roweather, respectively). However, in the macroweather re-

gime, the bare and dressed properties will be quite different.

Nevertheless, if we average (“dress”) by temporal averaging,

this will not affect the factorization property that we will

now investigate.

Consider the macroweather term with d¼ 3, the SCF is

KC;mw qð Þ¼
C1 2pð Þ�1

qa

a�1

ð2p

0

ð1
K�1

w

ðKc

1

r2þ t2ð Þ�3=2
r dr dhdt

� C1qa

a�1
log

1þ
ffiffiffi
2
p

2

� �
1� 2Kcð Þ�2þO Kcð Þ�4
� �	 


;

(A7)
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where Kc¼ sc/sw is the scale ratio of the macroweather part

of the cascade (we have put K�1
w ¼ 0, it is unimportant here).

For the (unnormalized) flux, we have

huq
mwi ¼ eKmw qð Þ � 1þ

ffiffiffi
2
p

2

� �
1� 2Kcð Þ�2
� �	 
 C1

a�1
qa

: (A8)

We therefore see that for large Kc, the moments asymptote

(according to a power law) to the value

huq
mwi �

1þ
ffiffiffi
2
p

2

� � C1
a�1

qa

: (A9)

This type of power law convergence to a constant is the hall-

mark of H< 0 processes.

2. The two point statistics and statistical space-time
macroweather factorization

The above results are for the one-point statistics of a pro-

cess developed over various ranges of scale (Kw for the weather

process and Kc for the macroweather component). If we want

to understand the internal structure, we need to consider two

point (or higher order multipoint) statistics such as the autocor-

relations or its Fourier transform, the spectrum. In particular,

we wish to show that the autocorrelation (at least approxi-

mately) factorizes into separate spatial and temporal functions.

To calculate the autocorrelation function, we first evalu-

ate the lagged product

ðuðR0 � DRÞuðR0ÞÞ ¼ eðCðR
0�DRÞþCðR0ÞÞ

¼ e
C

1=a
1

Ð
M
ðgðR0�DR�RÞþgðR0�RÞÞcðRÞddR

;

M ¼ fK�1
w � jrj � 1;1 � t � Kcg; ðA10Þ

where R ¼ ðr; tÞ ¼ ðx; y; tÞ and M is the macroweather region of

integration (see Fig. 5(b)), note that taking t> 0 accounts for the

Heaviside function, the causality constraint (we have put N¼ 1,

it is unimportant here). We can now calculate the SCF of the

autocorrelation by taking qth powers and statistical averaging

log h u R� DRð Þu Rð Þ
� �qi ¼ qa

a� 1
C1S DRð Þ; (A11)

with

SðDRÞ ¼
ð
M

ðgðR0 � DR � RÞ þ gðR0 � RÞÞaddR; (A12)

where S(DR) is the spatial part of the SCF (not to be con-

fused with the structure function). Since the statistics are

translationally invariant (statistical homogeneous), R0 does

not appear. Using symmetries, we obtain

SðDRÞ ¼
ð
M

ðgðR� DRÞ þ gðRÞÞaddR; (A13)

M is the macroweather integration volume (above) and d¼ 3

here (for (x,y,t) space see Lovejoy and Schertzer (2013),

Appendix 5B).

Statistical space-time factorization will follow if for

some functions F(Dr) and G(Dt)

hðuðR� DRÞuðRÞÞi ¼ eFðDrÞeGðDtÞ; (A14)

i.e., if

SðDRÞ � FðDrÞ þ GðDtÞ: (A15)

Therefore, if we expand S(DR) in a series in Dr, Dt, there

should be no space-time cross-terms such as jDrjDt.
Isotropic terms such as jDRjp ¼ ðjDrj2 þ Dt2Þp=2

will break

the factorization property but only weakly since in the mac-

roweather regime, Dt > 1 > jDrj; in the large Dt limit, facto-

rization will be respected by such terms.

Using gðRÞ ¼ jRj�d=a
there are two regions of integra-

tion to consider:

Region 1: jDRj < jRj
Considering just the integrand, repeated use of the bino-

mial expansion, keeping only the leading terms yields

g R� DRð Þ þ g Rð Þ
� �a
¼ jR� DRj�d=a þ jRj�d=a
� �a

� 2ajRj�d
1þ d

4
uþ d

8

d

2a
þ 1

� �
u2 þ � � �

� �
;

u ¼ �2
R � DR

jRj2
þ jDRj

jRj

� �2

: (A16)

Note that although the binomial expansions involved

are only valid for u< 1, the series is convergent for

jDRj=jRj < 1 as can be shown by bounding it in the

extreme cases where DR is parallel and antiparallel

to R.

Let us now consider the significance of the above expan-

sion term by term. The first term on the right (jRj�d
), when

integrated over the integration region M will yield a constant,

that (after exponentiation) will contribute a constant factor to

the autocorrelation; we are interested in the Dr and Dt
behaviours, these are in the higher order terms. From the expan-

sion, we see that we need to consider the behaviour of powers

of R � DR ¼ r � Dr þ tDt and of jDRj2 ¼ jDr j2 þ jDtj2, and

recall that we integrate them over the region M that has cylin-

drical symmetry about the t axis. Because of this symmetry,

any integrals of odd powers of r � Dr will vanish. Therefore,

the R � DR term will contribute only a Dt dependence. As for

the jDRj2 term (of order ðjDRj=jRjÞ2), it contributes to the Dr
dependence but there are no cross terms so that it respects fac-

torization. Considering next the u2 term, we see that the term

ðR � DRÞ2 ¼ ðr � DrÞ2 þ ðtDtÞ2 þ 2ðr � DrÞðtDtÞ will contrib-

ute to both a Dr and Dt dependency, but the cross term again

vanishes by symmetry. However (finally!), the jDRj4 ¼
jDrj4 þ 2jDrj2Dt2 þ Dt4 term (fourth order in ðjDRj=jRjÞ)
does contribute a factorization symmetry breaking term

2jDrj2Dt2. Actually, if we consider the series up to u3, then we

find a term proportional to ðR � DRÞ3 ¼ ðr � DrÞ3 þ
3ðr � DrÞ2ðtDtÞ þ 3ðr � DrÞðtDtÞ2 þ ðtDtÞ3 (third order in
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ðjDRj=jRjÞ) that has a factorization symmetry breaking term

3ðr � DrÞ2ðtDtÞ (again, the term 3ðr � DrÞðtDtÞ2 vanishes by

the circular symmetry of the r integration).

To summarize, when jRj > jDRj the zeroth order term

leads to a constant, the first order term to the Dt dependence,

the 2nd order to Dt and Dr dependence so that the first cross

term that breaks the factorization symmetry is the third order

term.

Region 2: jDRj > jRj

In this case, we can follow the approach of Lovejoy and

Schertzer (2010b) and introduce the ratio v

v ¼ jRj � jDRj
jRj

� �2

¼ jDRj2 1þ wð Þ;

w ¼ � 2R � DR

jDRj2
þ jRj

2

jDRj2
: (A17)

With this

ðjR� DRj�d=a þ jRj�d=aÞa ¼ jRj�dð1þ v�d=aÞa; v > 1; jR� DRj > jRj
jR� DRj�dð1þ vd=aÞa; v < 1; jR� DRj < jRj

; (A18)

so that we can make the following Binomial expansions for

each case separately (v> 1, v< 1).

Case (a) v > 1; jR� DRj > jRj :

R�d 1þv�d=a
� �a

¼jRj�d
1þav�d= 2að Þþa aþ1ð Þ

2
v�d=aþ���

� �
;

(A19)

with the nth term in the expansion given by the series

v�d= 2að Þð Þn ¼ jDRj�nd=a
1� nd

2a

� �
w

�

þ 1

2

nd

2a

� �
nd

2a
� 1

� �
w2 þ � � �

�
; (A20)

which is effectively an expansion in terms of
2R�DR

jDRj2 (recall in

this region of integration jRj < jDRj).

First, consider the zeroth order terms jDRj�nd=a

¼ ðjDrj2 þ Dt2Þ�nd=a
. This will in fact break the factoriza-

tion, but as mentioned above, only weakly because

Dt> 1>Dr. By cylindrical symmetry, after integration, the

first order term
R�DR

jDRj2 ¼
r�DrþtDt

jDr j2þDt2
will give only a contribution

Dt
jDr j2þDt2

� Dt�1 to the autocorrelation. The second order

term jDRj�2 ¼ ðjDrj2 þ Dt2Þ�1 � Dt�2 will likewise only

weakly break the factorization symmetry (when Dt is small,

Dr large). Continuing, we find that we again need to consider

third order terms in jRj=jDRj before the numerator displays a

factorization breaking term.

Case b) v < 1; jR� DRj < jRj
In this case, we have

jR� DRj�d
1þ vd=a
� �a

¼ jDRj�d
1þ wð Þ�d=2

1þ vd=a
� �a

� 1þ avd= 2að Þ þ a aþ 1ð Þ
2

vd=a þ � � �
� �

: (A21)

The analysis is thus essentially the same as above for the se-

ries in v (but with d replaced by �d) and with the extra term:

ð1þ wÞ�d=2
.

In conclusion, S(DR) has an expansion in separate

powers of Dt and Dr , with no DrDt terms before third order.

The only exception is when Dt is near the macroweather

minimum (Dt� 1) and Dr , near the spatial maximum

(Dr� 1). This means that that the autocorrelation function

factors into separate spatial and temporal functions to the

same order. Figure 9 confirms this on the dressed numerical

EFIF simulations described in Sec. III D).
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